Basic Nuclear Physics and Decays

- Basic Ingredients
- Models (Fermi, Droplet, Shell)
- Decays and Stability

Source: Chapter 1 &2, and Cameron (1984)

Players and Properties of Nuclei

Nucleons:

	Mass	Spin	Charge
Proton	938.272 MeV/c ²	1/2	+1e
Neutron	939.565 MeV/c ²	1/2	0

size: ~1 fm

Forces

Strong force (range ~ 1 fm) and electromagnetic force Nuclear Potentials

Rem: Nuclear radii R are determined by electron scattering experiments²

Measured Core Radii from Electron Scattering (see also Cross Sections)

Charge density can be approximated by a Saxon-Woods shape within about 10 %

$$\rho(r) = \frac{\rho_o}{1 + e^{r - R}/a_V}$$

with $R = 1.18 \times A^{1/3} - 0.048 fm$
and $a_V = 0.055 \pm 0.07 fm$

Binding Energy B of Nuclei with Z protons, N neutrons and Mass M(Z,N)

$$B(Z,N) = Zm_p + Nm_n - M(Z,N).$$

with $E=m c^2$, masses are measured in MeV.

Remark: Mass excess and atomic mass unit

Mex(Z,N) = M(Z,N) - A mu

u

Measured Nuclear Binding Energies of Stable Nuclei

Remark: Binding energy is released by nuclear burning

The Independent Particle Model

Assumption: Equilibrium distribution of cold Fermi-gas in a box like potential (last week, and see blackboard for details)

Phase
$$\Phi(E) = \frac{4\pi}{3} \frac{g}{h^3} (2m)^{3/2} E^{3/2}$$

Space $\omega(E) = 2\pi \frac{g}{h^3} (2m)^{3/2} E^{1/2}$. $E_F = \frac{h^2}{2m} \left(\frac{3}{8\pi} \frac{N}{V}\right)^{2/3}$

Mean binding energy per nucleon:

$$\bar{E} = \frac{1}{N} \int_{0}^{E_{F}} E \leq (E) dE = \frac{1}{\Phi(E_{F})} \int_{0}^{E_{F}} E \leq (E) dE$$
$$= \left(\frac{8\pi}{3} \frac{(2m)^{3/2}}{h^{3}} E_{F}^{3/2} V\right)^{-1} \cdot \frac{2}{5} \frac{4\pi}{h^{3}} (2m)^{3/2} E_{F}^{5/2} \cdot V$$
$$\bar{E} = \frac{3}{5} E_{F}. \qquad => \text{Mean energy/nucleon 8-12MeV}$$
$$\text{Potential V} = 40 \text{MeV}$$

Droplet Model (Nuclear Mass Formula) (Weizsacker, 1935, Bethe and Backer 1936)

 $B(Z, A) = a_V A$ Volume Effect (B = A (Potential – Ebar)

Surface Effect (less neighbors for nuclear at surface)

Coulomb repulsion of protons

Asymmetry Effect from Pauli exclusion (see blackboard)

$$\begin{array}{l} +\frac{12}{\sqrt{A}} & \text{if even-even} \\ 0 & \text{if odd A} \\ -\frac{12}{\sqrt{A}} & \text{if odd-odd.} \end{array}$$

Cooper Pairs (pairing gap of Nucleons)

$$B(Z,N) = a_V A - a_S A^{2/3} - a_C Z^2 A^{-1/3} - a_{sym} \frac{(N-Z)^2}{A} + B_{pair}(Z,N)$$

 $a_V = 16$ MeV, $a_S = 18.5$ MeV, $a_C = 0.72$ MeV, and $a_{sym} = 23.4$ MeV.

Differences between observed and predicted B(Z,N) [MeV]

Solution: Shell Model and Magic Numbers (e.g. Moeller et al. 94)

(16) --- (184) 1j_{15/2} - 184 . 3d_{3/2} -(4) ---- (168) $4s_{1/2}$ ---- (164) - Non-uniform 3d $2g_{7/2}$ --- (162) li11/2. (12)---- (154) $6\hbar\omega$ 3d5/2 (6) --- (142) even 2g_{9/2} distribution of (10) - (136)level by - 126 (14) - (126)3p1/2 ---- (112) 3p 3p3/2 -(4) ---- (110) splitting 2f5/2 ---- (106) $2f_{7/2}$ (8) - (100) $5\hbar\omega$ 1h9/2 (10) - (92)odd - Gaps in E - 1h_{11/2} -(12)- (82) 82 $3s_{1/2}$ - (70) (2) 2d3/2 -(4) --- (68) 24 2d5/2 (6) --- (64) $4\hbar\omega$ 1g7/2 (8) --- (58) - coupling even (10) --- (50) 1g9/2 50 .2p1/2-(2) -- (40) (6) --- (38) 1f5/2 -Magic numbers $3\hbar\omega$ 2p3/2 **—** (32) - 28 1f7/2 **—** (28) (4) - (20) 20 $2\hbar\omega$ (2) - (16)(6) - (14) $2s_{1/2}$ 1d5/2 (2) -- (8) $1\hbar\omega$. 1p_{3/2} -- (4) --- (6) odd - (2) -- (2) 2 0

9

Nuclear Decay Modes and Stability (closed system) Necessary Conditions:

1) Energy gain

$$Q = \sum_{i=initial} M_i - \sum_{i=final} M_i > 0.$$

Example: p or n emission $(Z, A) \rightarrow (Z, A-1) + n$ or $(Z, A) \rightarrow (Z-1, A-1) + p$

Drip lines of n and p $S_n(Z, A) = M(Z, A - 1) + m_n - M(Z, A)$ $S_p(Z, A) = M(Z - 1, A - 1) + m_p - M(Z, A).$

2) Transition must exist

The Role of the Coulomb Barrier & Lifetime

Example: for ${}^{197}Au \rightarrow {}^{58}Fe + {}^{139}I$ has Q ~ 100 MeV !

=> Small tunneling probability may cause life life times of the Universe => Element is stable

Main Decays for Nuclei between Drip Lines I

a) Strong decays (short time scales)

(i) alpha decay $(Z, A) \rightarrow (Z - 2, A - 4) + {}^4$ He $M_{nuc}(^{4}\text{He}) + M_{nuc}(Z-2, A-4) < M_{nuc}(Z, A)$ $M_{at}(^{4}\text{He}) + M_{at}(Z-2, A-4) < M_{at}(Z, A)$ (ii) fission $(Z, A) \rightarrow 2 \approx Z/2, \approx A/2$ $2 \cdot M_{nuc}(Z/2, A/2) < M_{nuc}(Z, A)$ $2 \cdot M_{at}(Z/2, A/2) < M_{at}(Z, A)$

lightest α emitter: ¹⁴⁴Nd (Z=60) (Q α = 1.9 MeV but still T_{1/2}=2.3 x 10¹⁵ yr)

beyond Bi α emission ends the valley of stability !

Remark on Fission of Heavy Nuclear (Z>>56):

Example: ²³⁴U from Moeller et al. Nature (2001)

- mass formula
 -> ¹/₂ favored
- Shell effects

Fission in the (Z,N) plane

green = spontaneous fission

Main Decays for Nuclei between Drip Lines II

b1) weak Interactions (long time scales)

(iii)
$$\beta^- decay (Z, A) \rightarrow (Z + 1, A) + e^- + \bar{\nu}_e$$

$$M_{nuc}(Z, A) > M_{nuc}(Z + 1, A) + m_e$$

$$M_{at}(Z, A) > M_{at}(Z + 1, A)$$
(iv) $\beta^+ decay (Z, A) \rightarrow (Z - 1, A) + e^+ + \nu_e$

 $M_{nuc}(Z, A) > M_{nuc}(Z - 1, A) + m_e$ $M_{at}(Z, A) > M_{at}(Z - 1, A) + 2m_e$

Main Decays for Nuclei between Drip Lines II

b2) weak Interactions (long time scales) Electron capture

(v) electron capture $(Z,A) + e^- \rightarrow (Z-1,A) + \nu_e$

$$M(Z, A) + m_e > M(Z - 1, A)$$
$$M_{at}(Z, A) > M_{at}(Z - 1, A)$$

Remark: Electron Capture has a Q value of 2 m_e lower than decays => happens mostly in environments with high density and temperatures (T>1MeV, >1E9 K).

The Valley of Stability via Beta Decays

beta decays don't have to overcome Coulomb barrier => always happen (with lifetimes of weak interaction)

(from Cameron, 1983)

Ζ

Mass Formula and Abundances in Nature

(Möller et al. 1995) versus neutron number.

20