Post-Main-Sequence Evolution: He-burning

- Post-Main sequence Evolution
- The triple-alpha Process

Literature: Iliadis, Chapt. 5.3

The Real H-R Diagram for Stars near the Sun

Real H-R Diagrams of Globular Clusters

As hydrogen is exhausted in the (convective) core of a star (point 2) it moves away from the main sequence (point 3) becomes a fully convective structure a red giant (5-6)

4

Zero Age Main Sequence (ZAMS): "1"

End of Main Sequence: "2" (from Kippenhahn & Weigelt, Stellar Structure & Evolution)

Stellar masses are usually given in ZAMS mass !

Temperature Evolution during H-shell Burn.

- H depletes with time \rightarrow isothermal core

T-rises to support pressure

Steep gradient at outer edge of burning zone

The Isothermal Core

- L(r) = 0 without energy production

mass [<i>M_{Ch}</i>]	T _{max} [10 ⁹ K]	$Y_e ho$ [g cm $^{-3}$]
0.100	0.0392	1.79 ×10 ⁴
0.316	0.195	2.88 ×10 ⁵
0.501	0.399	1.12 ×10 ⁶
0.631	0.586	2.77 ×10 ⁶
0.794	0.929	1.07 ×10 ⁷
0.891	1.250	3.65 ×10 ⁷
0.931	1.530	9.66 ×10 ⁷
0.966	2.170	2.84 ×10 ⁸
0.983	3.060	8.08×10^{8}
0.986	3.430	1.13 ×10 ⁹

Evolution of a 2 $M_{\ensuremath{\mathbb{R}}}$ Star to the Horizontal Branch

The Internal Structure of Stars on the Horizontal Branch

Radius = 10 Ro

Luminosity = 100 Lo

Temperature = 20,000 K to 5000 K

Helium core fusing He to C Radius = $1 R_0$ Envelope of H and He

And H in a very thin shell

The Structure of a Star on the Asymptotic Envelope of H and He **Giant Branch** Radius up to 1000 Ro Luminosity up to 10^5 L Temperature near 3000 K **Outer core** of He **Inner core** The radius of the core is of C & O only 0.01 R₀. Thin shell where Thin shell where H is fusing to He He is fusing to C It is not shown to scale!

AGB Star Compared to the Solar System

Helium burning 1 – the 3Ôprocess

unbound by ~92 keV – decays to 2 α $\,$ in 2.6 10^{-16} s $\,$

=> small equilibrium abundance of ⁸Be is established, nevertheless

Step 2:

⁸Be + $\alpha \rightarrow {}^{12}C_{\circ}$ would create ${}^{12}C$ at excitation energy of ~7.7 MeV

1954 Fred Hoyle realized that the fact that there is carbon in the universe requires a resonance in 12 C at \sim 7.7 MeV excitation energy

1957 discovered by Cook, Fowler, Lauritsen and Lauritsen at CALTECH with the correct properties (at 7.654 MeV)

Step 3: Gamma-decay

FIRST STEP: $\alpha + \alpha = {}^{8}Be$

⁸Be ground state is in a 92 keV resonance for the α + α reaction

14

Total Reaction Rate in Triple α/Part I:

Equilibrium reactions during first steps (fast and small energies)

$$\alpha + \alpha <=> {}^{8}Be$$

 ${}^{8}Be + \alpha <=> 12C^{+}$ (7.6MeV)

C (7.6 MeV) is given by Equilibrium Equation:

$$Y_{12C(7.6 \text{ MeV})} \left(\frac{2\pi \hbar^2}{m_{12C} kT}\right)^{3/2} = Y_{4He}^3 \rho^2 N_A^2 \left(\frac{2\pi \hbar^2}{m_{4He} kT}\right)^{9/2} e^{-Q/kT}$$

with $Q/c^2 = m_{12C(7.7)} - 3m_{\alpha}$ and $m(12C) \approx 3 m(\alpha)$

$$Y_{12C(7.6 \text{ MeV})} = 3^{3/2} Y_{4\text{He}}^3 \rho^2 N_A^2 \left(\frac{2\pi\hbar^2}{m_{4\text{He}}kT}\right)^3 e^{-Q/kT}$$

Total Reaction Rate in Triple α/Part II:

Gamma-decay-reaction determines speed/ total reaction rate !!!

$$r = Y_{12C(7.6MeV)} \rho N_A \frac{\Gamma_{\gamma}}{\hbar}$$

Rem:: r is dominated by resonance

Reaction rate of Helium burning in stellar environment:

$$r(3\alpha) = 1/6 Y_{\alpha}^2 \rho^2 N_A^2 < \alpha \alpha \alpha >$$

$$N_A^2 < \alpha \alpha \alpha >= 6 \cdot 3^{3/2} \rho^2 N_A^2 \left(\frac{2\pi \hbar^2}{m_{4\text{He}} kT}\right)^3 \frac{\Gamma_{\gamma}}{\hbar} e^{-Q/kT}$$

Energy generation is dominated by this transition

Helium burning/Part 2: $12C(\alpha,\gamma)$

But some C is converted into O ...

complications:

- very low cross section makes direct measurement impossible
- subthreshold resonances cannot be measured at resonance energy
- Interference between the E1 and the E2 components

E1 and E2 12C(alpha,gamma) 16 Data

100

E1 data and S-factor fit

Total S(300 keV) is about 170 \pm 40 keV b.

Therefore:

Uncertainty in the ${}^{12}C(\alpha,\gamma)$ rate is the single most important nuclear physics uncertainty in astrophysics

Affects:

- C/O ration \rightarrow further stellar evolution (C-burning or O-burning ?)
- iron (and other) core sizes (outcome of SN explosion)
- Nucleosynthesis (see next slide)

Some current results for S(300 keV):

S =53+13-18 keV b (Tischhauser et al. PRL88(2002)2501

S =79+21-21 keV b (Azuma et al. PRC50 (1994) 1194)

But others range among groups larger !

The 3rd Dredge Up in Massive Stars 25 Mo **Convective Envelope** 0.68-Mass (M_{sun}) $^{13}C(\alpha,n)$ **H-Shell** 0.67 $^{13}C(\alpha,n)$ He-Shell 1 1 $^{22}Ne(\alpha,n)$ 0.66 C+O Core 11 11 11 ~ 50000 ~ 400 ~ 50000 ~ 400 ~ 400

Extended alpha network for massive stars

Major Reactions during He Burning

(a) basic energy generation ⁴He($2\alpha, \gamma$)¹²C ¹²C(α, γ)¹⁶O[(α, γ)²⁰Ne] (b) neutron sources ¹⁴N(α, γ)¹⁸F($e^+\nu$)¹⁸O(α, γ)²²Ne ²²Ne(α, n)²⁵Mg ¹²C(p, γ)¹³N($e^+\nu$)¹³C(α, n)¹⁶O (c) high temperature burning with neutron sources ²²Ne(n, γ)²³Ne($e^-\bar{\nu}$)²³Na(n, γ)²⁴Na ($e^-\bar{\nu}$)²⁴Mg ²⁰Ne(n, γ)²¹Ne(α, n)²⁴Mg further s-processing via neutron captures and β -decays production of heavy elements ⁵⁶Fe(n, γ)⁵⁷Fe(n, γ)⁵⁸Fe etc. ²⁴Mg(n, γ)²⁵Mg etc.

s-process: Slow neutron Capture

- as soon as you produce neutrons, they react because the lack

Influence of 190 (alaba comma) on Nucleasurthasia

Abundance Structure at the end of the He-core Burning (25Mo)

 $T_8 = 1.25 - 1.5$: ¹⁴N is depleted, replaced by ¹⁸O via ¹⁴N(α, γ)¹⁸F($\beta \nu$)¹⁸O; first nucleus with neutron excess

 $T_8 \approx$ 1.6: ⁴He depletion and main phase of helium burning begins; first ¹²C, then ¹⁶O are produced; ²²Ne is produced by competition of ¹⁸O(α, γ)²²Ne and ²²Ne(α, γ)²⁶Mg and ²²Ne(α , n)²⁵Mg; free neutrons appear

Abundances compared to solar values

Squares: solar

Post-Main-Sequence Evolution beyond He

- Post He-burning Evolution of Massive Stars
- Alpha capture, NSE and advanced stages of stellar evolution

Literature: Iliadis, Chapt. 5.3

Stellar Structure after central He Burning

mass fractions of 25 M_{\odot} star

(Weaver & Woosley, 1998)

- *M*(*r*) > 11*M*_☉: matter not processed
- $8M_{\odot} < M(r) < 11M_{\odot}$: partial hydrogen burning
- 6M_☉ < M(r) < 8M_☉: complete H, but no He burning
- $3.3M_{\odot} < M(r) < 6M_{\odot}$: incomplete He burning, ¹²C enhanced, no ¹⁶O
- *M*(*r*) < 3.3: complete
 He burning, proceeds
 to advanced burning

Further evolution of burning conditions

Woosley, Heger, Weaver, Rev. Mod. Phys 74 (2002)1015

Carbon burning

Burning conditions:

for stars > 8 M_o (solar masses) (ZAMS)

T~ 600-700 Mio $\rho \sim 10$ -10 g/cm

Major reaction sequences:

$$\begin{array}{c}
^{12}C+ {}^{12}C \rightarrow {}^{24}Mg^* \rightarrow {}^{23}Mg+n-2.62 \text{ MeV} \\ & \longrightarrow {}^{20}Ne+\alpha+4.62 \text{ MeV} \\ & \longrightarrow {}^{23}Na+p+2.24 \text{ MeV}. \end{array}$$

of course p's, n's, and a's are recaptured ... 23Mg can b-decay into 23Na

<u>Composition at the end of burning:</u>

mainly 20Ne, 24Mg, with some 21,22Ne, 25Na, 24,25,26Mg, 26,27Al

12C(12C,gamma)24Mg

Major Reactions during Carbon Burning

(a) basic energy generation ${}^{12}C({}^{12}C,\alpha){}^{20}Ne = {}^{12}C({}^{12}C,p){}^{23}Na \\ {}^{23}Na(p,\alpha){}^{20}Ne = {}^{23}Na(p,\gamma){}^{24}Mg = {}^{12}C(\alpha,\gamma){}^{16}O$ (b) fluxes > $10^2 \times (a)$ $^{20}\mathrm{Ne}(\alpha,\gamma)^{24}\mathrm{Mg}$ $^{23}\mathrm{Na}(\alpha,\mathbf{p})^{26}\mathrm{Mg}(\mathbf{p},\gamma)^{27}\mathrm{Al}$ (c) low temperature, high density burning ${}^{12}C(p,\gamma){}^{13}N(e^+\nu){}^{13}C(\alpha,n){}^{16}O(\alpha,\gamma){}^{20}Ne$ $^{24}Mg(p,\gamma)^{25}Al(e^+\nu)^{25}Mg$ ²¹Ne(n, γ)²²Ne(n, γ)²³Ne($e^-\bar{\nu}$)²³Na(n, γ)²⁴Na($e^-\nu$)²⁴Mg + s-processing

• , •

. .

of Coulo or Dur

Nucleon Number A

33

Neon burning

Burning conditions:

for stars > 12 M (solar masses) (ZAMS) T ~ 1.3-1.7 Bio K $\rho \sim 10^{\circ}$ g/cm

Why would neon burn before oxygen ???

Answer:

Temperatures are sufficiently high to initiate **photodisintegration** of 20Ne

$$\begin{array}{c} {}_{2} \left(Ne + \gamma \rightarrow {}_{16}O + \alpha \right) \\ {}_{16}O + \alpha \rightarrow {}_{2} \left(Ne + \gamma \right) \end{array} \right\}$$
 equilibrium is established

this is followed by (using the liberated helium)

 $_{20}$ Ne+ $\alpha \rightarrow _{24}$ Mg + γ

so net effect:

$$2^{20}$$
Ne $\rightarrow {}^{16}$ O $+ {}^{24}$ Mg $+ 4.59$ MeV.

Photodisintegration

(Rolfs, Fig. 8.5.) 35

Major Production During Ne-Burning

- (a) basic energy generation
- $^{20}\mathrm{Ne}(\gamma,\alpha)^{16}\mathrm{O}$ $^{20}\mathrm{Ne}(\alpha,\gamma)^{24}\mathrm{Mg}(\alpha,\gamma)^{28}\mathrm{Si}$
- (b) fluxes > $10^2 \times (a)$
- $\begin{array}{ll} {}^{23}\mathrm{Na}(\mathrm{p},\!\alpha)^{20}\mathrm{Ne} & {}^{23}\mathrm{Na}(\alpha,\!\mathrm{p})^{26}\mathrm{Mg}(\alpha,\!\mathrm{n})^{29}\mathrm{Si} \\ {}^{20}\mathrm{Ne}(\mathrm{n},\!\gamma)^{21}\mathrm{Ne}(\alpha,\!\mathrm{n})^{24}\mathrm{Mg}(\mathrm{n},\!\gamma)^{25}\mathrm{Mg}(\alpha,\!\mathrm{n})^{28}\mathrm{Si} \\ {}^{28}\mathrm{Si}(\mathrm{n},\!\gamma)^{29}\mathrm{Si}(\mathrm{n},\!\gamma)^{30}\mathrm{Si} \\ {}^{24}\mathrm{Mg}(\alpha,\!\mathrm{p})^{27}\mathrm{Al}(\alpha,\!\mathrm{p})^{30}\mathrm{Si} \\ {}^{26}\mathrm{Mg}(\mathrm{p},\!\gamma)^{27}\mathrm{Al}(\mathrm{n},\!\gamma)^{28}\mathrm{Al}(e^{-}\bar{\nu})^{28}\mathrm{Si} \end{array}$

(c) low temperature, high density burning

 $^{22}\mathrm{Ne}(\alpha,\mathbf{n})^{25}\mathrm{Mg}(\mathbf{n},\gamma)^{26}\mathrm{Mg}(\mathbf{n},\gamma)^{27}\mathrm{Mg}(e^{-}\bar{\nu})^{27}\mathrm{Al}$ $^{22}\mathrm{Ne}$ left from prior neutron-rich carbon burning

Outcome of Ne Burning

.

Calculations of inverse reaction rates

A reaction rate for a process like ${}_{20}\text{Ne}+\gamma \rightarrow {}_{10}\text{O} + \alpha$ can be easily calculated from the inverse reaction rate ${}_{10}\text{O}+\alpha \rightarrow {}_{20}\text{Ne} + \gamma$ using the formalism developed so far.

In general there is a simple relationship between the rates of a reaction rate and its inverse process (if all particles are thermalized)

Derivation of "detailed balance principle":

Consider the reaction $A+B \rightarrow C$ with Q-value Q in thermal equilibrium. Then the abundance ratios are given by the Saha equation:

$$\frac{n_A n_B}{n_C} = \frac{g_A g_B}{g_C} \left(\frac{m_A m_B}{m_C}\right)^{3/2} \left(\frac{kT}{2\pi}\right)^{3/2} e^{-Q/kT}$$

In equilibrium the abundances are constant per definition. Therefore in addition

$$\frac{dn_{C}}{dt} = n_{A}n_{B} < \sigma\upsilon > -\lambda_{C}n_{C} = 0$$

or
$$\frac{\lambda_{C}}{<\sigma\upsilon >} = \frac{n_{A}n_{B}}{n_{C}}$$

If $\langle \sigma v \rangle$ is the A+B \rightarrow C reaction rate, and λ_{\circ} is the C \rightarrow A+B decay rate Therefore the rate ratio is defined by the Saha equation as well ! Using both results one finds

$$\frac{\lambda_C}{\langle \sigma v \rangle} = \frac{g_A g_B}{g_C} \left(\frac{m_A m_B}{m_C}\right)^{3/2} \left(\frac{kT}{2\pi \langle 2 \rangle}\right)^{3/2} e^{-Q/kT}$$

or using $m \sim m + m$ and introducing the reduced mass μ

Reminder: Nuclear Abundances in NSE

The **ratio of the nuclear abundances in NSE to the abundance of free protons and neutrons** is entirely determined by

$$Z \cdot \mu_p + N \cdot \mu_n = \mu_{(Z,N)}$$

which only depends on the chemical potentials

$$\mu = mc^2 + kT \ln \left[\frac{n}{g} \left(\frac{h^2}{2\pi \, mkT}\right)^{3/2}\right]$$

So all one needs are **density, temperature**, and for each nucleus **mass** and **partition function (one does not need reaction rates** !! - except for determining whether equilibrium is indeed established)

Solving the two equations on the previous page yields for the abundance ratio:

$$Y(Z,N) = Y_p^Z Y_n^N G(Z,N)(\rho N_A)^{A-1} \frac{A^{3/2}}{2^A} \left(\frac{2\pi = 2}{m_u kT}\right)^{\frac{3}{2}(A-1)} e^{B(Z,N)/kT}$$

$$\sum_{i} A_{i}Y_{i} = 1$$

- $\sum_{i} Z_{i}Y_{i} = Y_{e}$
- higher density favors (heavier) nuclei
- higher temperature favors free nucleons (or lighter nuclei)
- nuclei with high binding energy are strongly favored

NSE composition ($Y_{\circ}=0.5$)

after Meyer, Phys Rep. 227 (1993) 257 "Entropy and nucleosynthesis"

NSE is established on the timescale of these reaction rates (the slowest reaction)

A system will be in NSE if this timescale is shorter than the timescale for the temperature and density being sufficiently high.

for temperatures above \sim 5 GK even explosive events achieve full NSE

Oxygen burning

Burning conditions:

T~ 2 Bio $\rho \sim 10^{\circ} \text{ g/cm}$

Major reaction sequences:

- ${}^{16}\text{O} + {}^{16}\text{O} \rightarrow {}^{32}\text{S}^* \rightarrow {}^{31}\text{S} + n + 1.45 \text{ MeV}$ (5%)
 - $\rightarrow {}^{31}\text{P} + p + 7.68 \text{ MeV}$ (56%)
 - $\rightarrow {}^{30}\text{P} + d 2.41 \text{ MeV}$ (5%)
 - $\rightarrow {}^{28}\text{Si} + \alpha + 9.59 \text{ MeV}.$ (34%)

plus recapture of n,p,d,α

Main products: QSE

Major Processes during Oxygen Burning

(a) basic energy generation

electron captures

 ${}^{33}_{35}{\rm S}(e^-,\nu){}^{33}{\rm P(p,n)}{}^{33}{\rm S}_{35}{\rm Cl}(e^-,\nu){}^{35}{\rm S(p,n)}{}^{35}{\rm Cl}$

(b) high temperature burning

(c) low temperature, high density burning

 ${}^{16}{\rm O}({}^{16}{\rm O},{\rm n}){}^{31}{\rm S}(e^+\nu){}^{31}{\rm P}$

- -

Silicon burning

Burning conditions:

T~ 3-4 Bio $\rho \sim 10^{\circ}$ g/cm³

Reaction sequences:

- Silicon burning is fundamentally different to all other burning stages.
- Complex network of fast (γ, n) , (γ, p) , (γ, a) , (n, γ) , (p, γ) , and (a, γ) reactions
 - The net effect of Si burning is: 2 Si --> Ni,

need new concept to describe burning:

Nuclear Statistical Equilibrium (NSE) Quasi Statistical Equilibrium (QSE)

Products of hydrostatic Si Rurning

Summary stellar burning

	Stage	Time Scale	Temperature (T_9)	Density (g cm ⁻³)
>0.8M₀	Hydrogen burning	7 × 10 ⁶ y	0.06	5
	Helium burning	5×10^5 y	0.23	7×10^{2}
	Carbon burning	600 y	0.93	2×10^{5}
~ 01VI 0	Neon burning	1 y	1.7	4×10^{6}
	Oxygen burning	6 months	2.3	1×10^{7}
1015	Silicon burning	1 d	4.1	3×10^{7}
>12M	Core collapse	seconds	8.1	3×10^{9}
	Core bounce	milliseconds	34.8	$\simeq 3 \times 10^{14}$
	Explosive burning	0.1-10 s	1.2-7.0	Varies

TABLE 8.1 Evolutionary Stages of a 25 M_o Star^a

Why do timescales get smaller ?

<u>Note:</u> Kelvin-Helmholtz timescale for red supergiant \sim 10,000 years, so for massive stars, no surface temperature - luminosity change for C-burning and beyond

Final composition of a 25 Mo star:

Summary: Main Products of Hydrostatic Burning

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
Н	He	¹⁴ N	0.02	10 ⁷	$4 \text{ H} \xrightarrow{\text{CNO}} {}^{\text{CNO}} {}^{\text{4}}\text{He}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O
c	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	20 Ne(γ, α) 16 O 20 Ne(α, γ) 24 Mg
OF	Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

Summary: Stellar Evolution Stages

14.0

hydrogen burning						
$M_{ m initial}$	T	ρ	M	L	R	au
${\rm M}_{\odot}$	$10^7 \mathrm{K}$	${ m g~cm^{-3}}$	${\rm M}_{\odot}$	$10^3{ m L}_{\odot}$	\mathbf{R}_{\odot}	Myr
1	1.57	153	1.00	0.001	1.00	$\sim 1,100$
15	3.53	5.81	14.9	28.0	6.75	11.1
20	3.69	4.53	19.7	62.6	8.03	8.13
25	3.81	3.81	24.5	110	9.17	6.70
75	4.26	1.99	67.3	916	21.3	3.16
5 **		heliun	n burn	ing		9
$M_{ m initial}$	T	ρ	М	L	R	τ
${\rm M}_{\odot}$	$10^8 { m K}$	$10^3\mathrm{gcm^{-3}}$	${\rm M}_{\odot}$	$10^3{ m L}_{\odot}$	\mathbf{R}_{\odot}	Myr
1	1.25	20	0.71	0.044	~ 100	110
15	1.78	1.39	14.3	41.3	461	1.97
20	1.88	0.968	18.6	102	649	1.17
25	1.96	0.762	19.6	182	1,030	0.839
75	2.10	0.490	16.1	384	1.17	0.478
8		carbo	n burn	ing		
$M_{ m initial}$	T	ρ	M	L	R	au
${\rm M}_{\odot}$	$10^8 { m K}$	$10^{5}{ m gcm^{-3}}$	M_\odot	10^3L_\odot	\mathbf{R}_{\odot}	kyr
15	8.34	2.39	12.6	83.3	803	2.03
20	8.70	1.70	14.7	143	1,070	0.976
25	8.41	1.29	12.5	245	1,390	0.522
75	8.68	1.39	6.37	164	0.644	1.07
3	0	1.0 2.0	3.0	(4.5 6.0	10.0

		neon l	ournin	g			
$M_{\rm initial}$	T	ρ	M	L	R	τ	
${\rm M}_{\odot}$	$10^9{ m K}$	$10^6 \mathrm{g}\mathrm{cm}^{-3}$	M_{\odot}	$10^3{ m L}_{\odot}$	$ m R_{\odot}$	\mathbf{yr}	
15	1.63	7.24	12.6	86.5	821	0.732	
20	1.57	3.10	14.7	147	1,090	0.599	
25	1.57	3.95	12.5	246	1,400	0.891	
75	1.62	5.21	6.36	167	0.715	0.569	
	oxygen burning						
$M_{ m initial}$	T	ρ	M	L	R	au	
${\rm M}_{\odot}$	$10^9{ m K}$	$10^{6} {\rm g} {\rm cm}^{-3}$	M_{\odot}	$10^3{ m L}_{\odot}$	\mathbf{R}_{\odot}	\mathbf{yr}	
15	1.94	6.66	12.6	86.6	821	2.58	
20	1.98	5.55	14.7	147	1,090	1.25	
25	2.09	3.60	12.5	246	1,400	0.402	
75	2.04	4.70	6.36	172	0.756	0.908	
		silicon	burnir	ıg			
$M_{\rm initial}$	T	ρ	Μ	L	R	au	
${\rm M}_{\odot}$	$10^9 { m K}$	$10^{7}{ m gcm^{-3}}$	${\rm M}_{\odot}$	$10^3{ m L}_{\odot}$	$ m R_{\odot}$	\mathbf{d}	
15	3.34	4.26	12.6	86.5	821	18.3	
20	3.34	4.26	14.7	147	1,090	11.5	
25	3.65	3.01	12.5	246	1,400	0.733	
75	3.55	3.73	6.36	173	0.755	2.09	