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ABSTRACT 

Stellar pulsations, either as radial or nonradial dynamical variabilities, are 
found in many phases of stellar evolution, and these variable stars occupy vastly 
differing regions on the Hertzsprung-Russell diagram. The diagnostic potential 

of such oscillations is considerable and its importance will grow in the future 

when smaller and smaller amplitude variabilities can be monitored as a matter 
of routine. This review of the theoretical aspects of stellar pulsations appears 

in two parts. The first part introduces the theoretical concepts and the physical 
mechanisms involved in stellar pulsations and reviews recent advances therein. 

Applications of the theory to model neutron-star oscillations and the pulsations 

of hydrogen-deficient stars are also reviewed. 

1. INTRODUCTION 
Published attempts to attribute the periodic variation of the light and radial 
velocity of some variable stars to intrinsic physical mechanisms go back to 
the second half of the past century (Ritter 1879). The physical theory of stel
lar pulsations was mainly developed in the first half of the 20th century. The 
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76 GAUTSCHY & SAIO 

expositions of Rosseland (1949, chapter 1) and Ledoux & Walraven (1958) con
tain very instructive accounts of these early theoretical achievements. However, 
it was only during the late 1950s to early 1960s (see Zhevakhin 1963 for ref
erences to his early contributions; Cox & Whitney 1958; Baker & Kippenhahn 
1962, 1965), in connection with the advent of computers, that the driving mech
anism behind the oscillations of the most prominent class of pulsating stars-the 
classical Cepheids-was unraveled. During the following years, the number 
of publications increased dramatically and our physical understanding of the 
origin of many types of pulsating variables grew significantly. The review by 
Cox (1974) provides an excellent impression of the achievements during the 
1960s and the early 1970s, in particular of radial pulsation theory. In a concise 
overview, Smeyers ( 1984) discusses aspects of nonradial pulsation theory and 
its application to stellar astrophysics. 

Observations of the different classes of pulsating variable stars show that 
they populate extended regions distributed all over the HR diagram. Possibly, 
unknown types of pulsating variables are still lurking and will only be discov
ered with detectors more sensitive than those in use today. In that respect, it 
is expected (Brown & Gilliland 1994) that, for example, most solar-type stars 
should also exhibit a solar-like oscillation signature. The technology for de
tecting and monitoring the expected very weak signals of such oscillations is 
now under active development. 

Figure 1 shows the distribution of a small number of variable stars on the 
HR diagram. The black dots denote observed stars for which calibrations of 
their effective temperature and luminosity could be found in the literature; this 
is possible only for a tiny fraction of all pulsating stars. As the selection is far 
from complete, the relative density of variable stars on the HR diagram need not 
be significant. To better link the location of the pulsating variables with stellar 
structure and evolution, we added some guiding lines from stellar evolution 
theory in Figure l. The heavy line stretching from the upper left to the lower 
right marks the position of the main sequence for solar abundances. Starting 
at the main sequence are stellar evolutionary tracks of 1 ,  2, 5, 1 2, and 30 M0 
stars, respectively. The horizontal track passing between the paths of the 5 and 
the 1 2  M0 stars marks the evolution to high temperatures of a post-asymptotic 
giant-branch (post-AGB) star. Such an object eventually (after the "knee" of 
its evolutionary track) settles on the cooling track of white dwarfs. 

The dotted lines running almost vertically through Figure 1 approximate the 
location of the "classical" instability strip. In its domain we find (going from 
high to low luminosities) the Cepheids, RR Lyrae stars, and 8 Scuti stars. To 
avoid overcrowding, they are not labeled separately in Figure 1 .  Miras (M) 
and red, long-period variables (SR) are situated at temperatures below the red 
edge of the instability strip, at luminosities above �103L0' The instability 
strip is extrapolated in an ad hoc manner beyond the main sequence to show 
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Figure 1 HR diagram showing the distribution of types of pulsating variables (dots). The heavy 
line shows the location of the zero-age main sequence for solar abundances. A number of evo
lutionary tracks, labeled with the masses in solar units, are included. A post-AGB evolutionary 
path for a 0.63 M0 star is shown; it leaves the AGB at constant luminosity and turns later into a 
white-dwarf cooling track. The thin diagonal lines represent loci of constant radius. The classical 
instability strip and its extrapolation towards the white-dwarf region is indicated by dashed lines. 
Abbreviations: WR: Wolf-Rayet stars; LBV: luminous blue variables; SPB: slowly pulsating B 
stars; M: Miras; SR: semiregular variables; PNNV: planetary nebulae nuclei variables; DOV, DBV, 
DAV: variable DO-, DB-, and DA-type white dwarfs. 

where it crosses the cooling tracks of white dwarfs. In the neighborhood of 
this crossing, the pulsating hydrogen-rich DA white dwarfs (ZZ Cet variables) 
are observed. Along the white dwarfs' cooling tracks, two other oscillating 
families of white dwarfs are found: the He white dwarfs around log Teff = 4.4 
(DB) and the very hot DO white dwarfs situated at the knee of the post-AGB 
track nearly L/L0 = 3.8. Along the horizontal part of the post-AGB track, 
oscillating central stars of planetary nebulae (PNNV) are observed. Also, 
variable hydrogen-deficient stars show comparable luminosities, with high 
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78 GAUTSCHY & SAIO 

effective temperatures exceeding that of the blue edge of the classical insta
bility strip. 

The pulsating variables aligning along the main sequence between about 
3 and 15 M0 are called pulsating B stars; they can be further classified into 
several subclasses (such as f3 Cepheids, slowly pulsating B stars, Be stars). The 
region on the HR diagram above about 10

5 L0 encompasses the domain where 
very luminous blue variables (LBV) are observed over a very broad effective
temperature range. Also located at high luminosities are the Wolf-Rayet (WR) 
stars for which pulsational instabilities might play a role. 

Clearly, the study of pulsating stars must not be considered as a narrow
minded domain of research. Pulsational instabilities are encountered in many 
major phases of stellar evolution, for a large range of stellar masses. Pulsational 
instabilities provide a unique opportunity to learn about and derive constraints 
on stellar physical mechanisms that would not be accessible otherwise. 

This review will be published in two parts. First, in this volume, we present 
the theoretical aspects of stellar pulsations and recent advancements therein. 
We also outline persisting problems that need to be overcome to enable a better 
understanding of the involved stellar physics. Two aspects of theoretical appli
cations are included: relativistic influences, in particular results from stability 
investigations of neutron stars; and the pulsations of hydrogen-deficient stars, 
because their evolutionary state is sufficiently uncertain so that their story can 
be easily decoupled from Part 2. This second part of the review, to be pub
lished in next year's volume, will be restricted to theoretical applications to the 
different kinds of observed pulsating stars. In it, we will discuss the success of 
explaining the properties of strongly differing stars within the unified frame
work of pulsation theory. Again, we will emphasize the limitations and the 
failures of the theory as it stands today. 

As there exists already a number of excellent review articles and textbooks on 
stellar pulsation theory, we refer to them whenever appropriate. We emphasize 
physical and astronomical aspects often at the cost of mathematically clean 
argumentation. For treatises based on more mathematical rigor we suggest 
Ledoux & Walraven ( 1958), Cox (1980), Smeyers ( 1984), or Unno et al ( 1989). 
The scope of this exposition prevents us from being encyclopedic. Also, the 
growing parallel advancement in research fields, together with the inevitable 
personal bias, often leads to mentioning only exemplary references that might 
not give proper credit to the creators of underlying ideas. 

2. DEVELOPMEN TS IN OBSERVATIONAL APPROACHES 
The observational emphasis in past decades lay on long-term monitoring of 
pulsating stars and on the detection of secular variations of their periods. 
The classes of pulsating stars mentioned in Landoldt-Bornstein (Duerbeck & 
Seitter 1982) have only one or a very low number of pulsation modes with 
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amplitudes above a few hundredths of a magnitude. Technological improve
ments in instrumentation in recent years has lead to a dramatic increase in the 
availability of high-quality data on pulsating stars, especially measurements of 
variations with very small amplitudes. Presently, light variations of the order of 
a few times 10-3 mag are monitored as a matter of routine. The requirements 
of the new discipline of asteroseismology (Brown & Gilliland 1994) now drive 
efforts toward the detection of variations on the level of 10-6 mag, which should 
make possible monitoring of solar-type oscillations in distant stars. Gilliland & 
Brown ( 1988) and Gilliland et al (1991) showed differential, simultaneous CCD 
photometry on one-meter-class telescopes to be sufficient to obtain the highly 
accurate magnitudes necessary for modern variable star studies. The applica
tion of carefully selected statistical methods to ensembles of stars distributed 
over the field of view of the CCD frame allowed them to reduce the errors to 
the intrinsic limitations imposed by scintillation and photon statistics. Even 
under less-than-ideal meteorological conditions, high-quality time-series pho
tometry was still possible. Methodical improvements in reduction strategies 
to obtain high-quality CCD photometry are being actively pursued (Howell 
1992, Kjeldsen & Frandsen 1992). Repeating the success story of solar os
cillations for deducing detailed structural information will not be achievable, 
however, for distant stars as shown by Brown et al ( 1994) in their estimates 
of the improvements expected from seismological data for constraining basic 
stellar parameters such as mass, age, metallicity, or mixing-length parameter. 

The detection of very closely spaced oscillation frequencies, like those oc
curring in rotating, nonradially pulsating stars, requires long time bases over 
which monitoring has to be essentially uninterrupted to avoid contamination 
of the power spectra by complicated window functions. One way to avoid 
the day/night transition problem is to go above the Earth's atmosphere and 
perform observations on space-borne platforms. A first pilot study--called 
EVRIS-is planned to fly on the satellite MARS94 (Baglin et al 1993). Fur
ther projects for dedicated photometry and spectroscopy of variable stars on 
satellites are in preparation (see presentations in GONG92, ITS92). Not only 
do space-borne experiments allow for long time series, they also eliminate all 
disturbances induced by the Earth's atmosphere. An easier way to suppress 
undesired side lobes due to the window function is to coordinate observations 
of selected variable stars between observatories, optimally distributed in lon
gitude on the Earth. Important observations of oscillating white dwarfs were 
obtained with this approach by the WET project (Nather et a1 1990, Clemens et al 
1992). A similar observing strategy devoted to monitoring 8 Scuti stars, called 
STEPHI, has already yielded detailed frequency spectra for several variables 
(Belmonte et al 1993). 

Photometric methods allow the observation only of the large-scale features on 
the surfaces of stars. Oscillation modes of spherical degree e higher than about 3 
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80 GAUTSCHY & SAIO 

(see Section 3.2.1) can potentially be observed by monitoring the variations of 
spectral line profiles. High signal-to-noise spectroscopy of selected spectral 
lines provides, through asymmetries and bump features passing through the 
line profiles, information not only on frequencies but also on the prevailing 
patterns on the surfaces of oscillating stars (Vogt & Penrod 1983; contributions 
in ES090). The moment method (Balona 1986a, b; Aerts et aI1992), together 
with direct modeling of spectral lines in nonradially oscillating stars (Osaki 
1971), can restrict the possible modal admixtures. 

To monitor photospheric velocity fields, which are of the order of m sec-I 

or eventually as small as those encountered in solar oscillations (some lOs of 
cm sec-I), highly stable and elaborate resonance-type spectrographs are being 
developed. Their operation is presently still limited to bright stars to obtain 
sufficiently high signal-to-noise observations on short enough time scales (e.g. 
Pottasch et a11992, Mosser et a11993, Noyes et a11993, Hatzes & Kiirster 1994). 

3. THE THEORETICAL MINIMUM2 
If we want to do better than phenomenologically classify the zoo of stellar 
pulsations we need know their physical origin. This section addresses the theo
retical foundations in a twofold way: We introduce basic notions and concepts 
for the uninitiated, and we review recent advances in the theoretical treatment 
of stellar pulsations. 

3.1 Basic Equations 

We reproduce, in a very succinct form, the equations describing the basic 
physical mechanisms that underlie stellar pulsations. These equations describe 
self-gravitating fluid configurations whose stability properties are to be inves
tigated. More rigorous, and in particular more pedagogical, derivations can be 
found in Ledoux & Walraven (1958) or in the monographs of Cox (1980) and 
Unno et al (1989). 

3.1.1 EQUATIONS FOR SELF-GRAVITATING FLUIDS These equations provide the 
basis for the description of stellar oscillations. The continuity equation may be 
written as 

ap at + V . (pu) = 0, (1) 

where p denotes the matter density, and u the fluid velocity field caused by 
oscillation and/or rotation of the configuration. The momentum

' 
equation in an 

inertial frame of reference reads as 
au 1 
-+u· Vu = --Vp - V1/!- (VV· V), (2) 
at p 

2This expression. attributed to LD Landau (Landau & Lifschitz 1981). should paraphrase the 
minimal conceptual and formal background required to follow the development in a research field. 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
5.

33
:7

5-
11

3.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 F

lo
ri

da
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
01

/1
9/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



STELLAR PULSATIONS 81 

where p stands for the pressure, 1/1 for the gravitational potential, and V for 
the velocity of turbulent convection. The angle brackets indicate small-scale 
spatial averages. Poisson's equation for the gravitational potential is 

(3) 

where G is the gravitational constant. Conservation of thermal energy may be 
formulated as 

dS dE p dp 1 
T- = - - - - = E - -'\I. (FR +Fc), 

dt dt p2 dt P 
(4) 

where S is the specific entropy, E the specific internal energy, and E the nuclear 
energy generation rate per unit mass. The energy flux carried by convection 
is denoted by Fe; FR is the radiative flux vector which, in the optically thick 
regime, is described by diffusion of photons: 

4ac 3 
FR = --T '\IT, 

3KP 
(5) 

where a is the radiation constant, c is the speed of light, and K is the Rosseland 
mean opacity. 

To close the set of equations, an equation of state relating p, p, and T needs 
to be specified. The opacity and the nuclear energy generation rate are assumed 
to be expressible as functions of p, T, and chemical composition. Finally, the 
quantities related to convection, (V. '\IV) and Fe, must be specified. This, the 
most complicated aspect of the theory (Xiong 1981, Baker 1987, Unno & Xiong 
1993), still defies a satisfactory solution. Thus, in most cases the coupling of 
convection and pulsation is simply neglected. This approximation constrains 
the success of the theory to stars with weak convection zones only (see also 
Section 3.3.2). 

3.1.2 LINEAR PERTURBATION EQUATIONS To describe the evolution of small 
perturbations about equilibrium states of stars, linear perturbation equations are 
used. The linear approximation is the canonical framework in which stability 
conditions are evaluated and the means by which instability regions on the HR 
diagram are determined for large sets of stellar models. 

The equations describing stellar configurations are conveniently expressed 
in spherical coordinates (r, e, ¢) in which the axis e = 0 coincides with the 
axis of possible rotation of the unperturbed star. For simplicity, we assume that 
only uniform rotation occurs (Le. Do = n x r) and that the equilibrium state is 
axisymmetric. The temporal and azimuthal dependence of any perturbed quan
tity can then be represented by exp[i(at + m¢)]. The perturbation equations 
derived from Equations (1)-(5) reduce to: 

pi + '\I . (�) = 0, (6) 
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82 GAUTSCHY & SAIO 

and 

-(a + mQ)2� + 2i (a + mQ) (n x �) = 

-2. V' p' + 
p' V' P - V'1/I' + «(V· V'V)' , p p2 

V'21/1' = 41rGp', 
. (8 P 8 E) lapT8S=pE -;+-;- -8(V'·FR+V'·Fc) ,  

F' =FR 3----- - --V'T'. ( T' K' p') 4a cT3 
R T K P 3KP 

(7) 

(8) 

(9) 

(10) 

The displacement vector � is defined as r - ro, where the subscript 0 denotes the 
equilibrium condition. The primed quantities, q', indicate Eulerian perturba
tions of a physical variable q; 8q stands for its Lagrangian perturbations. The 
two pictures are connected by the relation 

oq = q' + � . V q. (11) 

Together with suitable boundary conditions, Equations (6)-(10) constitute a 
boundary-eigenvalue problem. The eigenvalue a is generally a complex quan
tity, aR + iar .  where aR represents the oscillation frequency and al measures 
the growth (al < 0) or damping (al > 0) time. 

3.2 Adiabatic Pulsations 

In the adiabatic approximation, fluid parcels displaced by an oscillation do not 
exchalJ.ge energy with their surroundings. Such an assumption is very good for 
many stellar oscillations and it applies in a star if the dynamical perturbation 
time is much shorter than the time for heat exchange. In the adiabatic approach, 
which is also occasionally referred to as an isentropic approximation (Smeyers 
1984), the relation 

8p 1 8p 
- = --

p rl P (12) 

applies. The adiabatic exponent r1 is defined by r1 == (a In pia In p)s. In the 
adiabatic approximation, the dynamical equations of stellar pulsations decouple 
from the energy conservation and flux equations (Equations 9 and 10). Only for 
this simplified problem do we presently have mathematical theorems specifying 
its properties. 

3.2.1 RADIAL AND NONRADIAL PULSATIONS The equation for the displace
ment vector field in a nonrotating, spherically symmetric star (we neglect the in
fluence of turbulent convection in the following) may be written symbolically as 

_a2� + .c(�) = 0, (13) 
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where £ is a Hermitian operator in the case of vanishing pressure at the stellar 
surface. (Even for real stars having finite, but small surface pressure, Hermitic
ity remains approximately true.) The explicit form of £ is given in section 15.2 
of Cox ( 1980). Recently, Beyer & Schmidt ( 1994) elaborated on mathematical 
subtleties concerning the eigen-spectrum of self-adjoint problems when both 
boundaries of the operator £ are singular. They found that no additional, con
tinuous mode spectrum exists under these conditions, as had been suspected 
for a long time (Ledoux & Walraven 1958). Because £ is Hermitian, all eigen
values a2 are real and eigenfunctions associated with different eigenvalues are 
orthogonal to one another. The reality of a2 ensures that the temporal behavior 
of the adiabatic perturbations is purely oscillatory when a2 > 0 and monotonic 
when a2 < 0 (dynamical instability). 

We may decompose the term £(t) in Equation (13) into the form 

( 14) 

where e, is the unit vector in the radial direction, and 11 and fz consist of terms 
proportional to g, or V.l . S.l' with 

and 

A a e", a V.L == eo- + -- --. Be sin e B¢ 
When this decomposition is applied to Equation ( 13), only angular derivatives in 
the form of Vi occur. As the spherical harmonics Y;' (e, ¢) are eigenfunctions 
of the operator Vi, i.e. 

( 15) 

the angular dependencies of perturbed quantities can be expressed by a sin gle 
Yt(e, cp). Perturbed scalar variables are directly proportional to Yt. The 
displacement vector for a spheroidal mode is decomposed as 

[A (A a A 1 a)] m iat t = g,e, + �h eo CJe + e", sine CJcp Yt (e, ¢)e . (16) 

The equations describing the dynamical behavior of nonradial motions are thus 
reduced to an ordinary differential equation with radial dependence only. (This 
property holds also in the case of nonadiabatic oscillations, see e.g. Unno et al 
1989, section 13.) For vector-valued quantities, the direct use of vector spherical 
harmonics might prove preferable. Takata & Shibahashi (1994) introduced 
them to simplify the evaluation of the Lorentz- and Coriolis-force terms in a 
perturbation analysis of oscillations in magnetized, rotating stars. 
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84 GAUTSCHY & SAIO 

The effects of the angular dependence of the eigenfunctions enter the equa
tions only through terms proportional to e(e + 1), which is related to the hori
zontal wavenumber of the oscillation, [e(e + 1)]1/2/r. Because the azimuthal 
order m (-£ � m � f.) does not appear in the equations, the eigenvalues (i.e. 
oscillation frequencies) are (2e + I)-fold degenerate. The quantity e is referred 
to as the spherical degree of a mode. The different radial overtones, i.e. dif
ferent numbers of nodes (n or k) of the eigenfunctions in radial direction, are 
called radial orders. 

Inspection of Equations (13) and (14) shows that these equations are also 
satisfied if 

a = 0, ;, = 0, and V'1.' �1. = 0. 

The last two relations are satisfied when the displacements are toroidal, i.e. 
when 

(17) 

The eigenfrequency is zero for vanishing rotation or vanishing magnetic field 
as toroidal displacements on spherical shells of a fluid induce only a translation 
of the spherical eqUilibrium structure. If the star rotates, toroidal displacements 
describe Rossby waves with finite oscillation frequencies. 

Oscillations with £ = ° represent spherically symmetric, i.e. radial pulsa
tions. In this case, Equation (13) is reduced to 

2 1 ( 4 d;, ) 1 { d } 

-a ;, - - rlpr - -- -[(3rt - 4)p] ;, = O. r4p dr pr dr 
(18) 

This equation, together with boundary conditions (;r = ° at the center and, 
for example, op = ° at the surface), form a Sturm-Liouville-type eigenvalue 
problem with eigenvalue 0'2. The eigenvalue associated with the eigenfunc
tion having n nodes is represented by a;. The eigenvalues form a Sturmian 
sequence, aJ < af < a:j < . . . . Thus, the period of oscillation decreases as 
the number of nodes increases because the period is approximately the sound 
travel time between two adjacent nodes (Hansen 1972). 

From the above equation and the variational property of the eigenvalues, the 
inequalities 

(3(r1) -4)(-Egrav//) > a� > (3(rd -4)41l'G{p}/3 

can be derived. Here, {p} is the mean density of the star, (rd an average of 
the adiabatic exponent rl, Egrav the gravitational potential energy, and I the 
moment of inertia of the star. (See sections 8.9 and 8.10 in Cox 1980 for a 
derivation and discussion). If (rl) < 4/3, at least the fundamental mode is 
dynamically unstable (0'6 < 0). We note that, since (-Egravl /) is proportional 
to the mean density of the star, the period of the fundamental mode (21l'lao) 
is inversely proportional to the square of the mean density. This dependence 
states the period-mean density relation o� stellar pulsations. 
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3.2.2 ASYMPTOTIC BEHAVIOR The asymptotic behavior of nonradial pulsa
tions provides insight into the nature of the elementary modal families in the 
limit of high and low oscillation frequencies, respectively. To keep the discus
sion simple, we disregard the Eulerian perturbation of the gravitational potential 
1/1' (Cowling approximation) in this subsection (Cowling 1941). This approach 
is particularly suitable for high-order modes. Using (16), the continuity and 
momentum equations are written as 

--(r2§r) - -§r + 1 - --1.. - = 0 
1 d g ( L2) p' 
r2 dr c; a2 pc; 

and 
1 dp' g , 2 2 --+ -p + (N - a )�r = O. 
p dr pc� 

(19) 

(20) 

Le and N are, respectively, the Lamb frequency and the Brunt-Viiisiiliifrequency 
defined as 

e(e + l)c; 

r 2 
and (21) 

where g is the local gravitational acceleration, Cs is the adiabatic sound speed, 
cp is the specific heat, and 8 = a log p I a log T, both at constant pressure. 

The two frequencies given in Equation (21 )  play important roles in charac
terizing nonradial oscillations. This can be seen in a local analysis where we 
assume that 

§" p' ()( exp(ikr r) , 

if Ikr I » 1. Upon substituting this decomposition attempt into Equations (19) 
and (20), we obtain the dispersion relation 

(a2 _ L2)(a2 _ N2) 
k; ::::: 

e 
2 2 • (22) 

a Cs 

An oscillation propagates in radial direction (i.e. it oscillates spatially) when 
kr is real. If Le and N vary appropriately in space, the oscillations are well 
trapped within their propagation regions. The dispersion relation shows that 
two types of oscillation are possible: a p-mode, which is a propagating wave 
when a2 > L� and a2 > N2; and a g-mode, which propagates when a2 < L� 
and a2 < N2• The propagation zones from a short-wave analysis are indicated 
by dotted regions, denoted by P and G, in Figure 2. (See also Section 3.2.3 for 
explanations of Figure 2.) In all other cases, the oscillation amplitude decays 
exponentially in space; the oscillation is evanescent. In the high-frequency limit 
of p-modes, kr grows as a2/c;, while it is proportional to e(e + 1)N2/(ar)2 
for very-low frequency g-modes. The restoring force for the p-modes comes 
from the compressibility of the gas. Thus, p-modes are, as the radial pulsations, 

A
nn

u.
 R

ev
. A

st
ro

. A
st

ro
ph

ys
. 1

99
5.

33
:7

5-
11

3.
 D

ow
nl

oa
de

d 
fr

om
 a

rj
ou

rn
al

s.
an

nu
al

re
vi

ew
s.

or
g

by
 F

lo
ri

da
 S

ta
te

 U
ni

ve
rs

ity
 o

n 
01

/1
9/

10
. F

or
 p

er
so

na
l u

se
 o

nl
y.



86 GAUTSCHY & SAIO 

C'l 
II 

" � 
bO 0 0 ....-< 

'"d 
� ro 

� 
bO -1 0 

....-< L 

-2 

N 

/-- 0 

! -1 

Figure 2 (Large graph) Spatial run of the Lamb frequency L£=2 and of the Brunt-ViiisiiUi fre
quency N (solid line) in a star. The model represents a 2 M0 starin its subgiant stage (model for a () 
Scuti variable). The ordinate is expressed in units of the free-fall time; the abscissa shows the total 

pressure (in cgs units) inside the star. The stellar surface is on the left; the stellar center is on the right. 

(Inset) The propagation regions, indicated by the dotted areas, for p- and g-modes (labeled as P and G 
region, respectively), derived from an explicit short -wave analysis. The propagation regions are well 
approximated by the inequalities involving Lamb and Brunt -Viiisiilii frequencies given in the text. 

sound waves influenced by the gravitational field of the star. On the other hand, 
the restoring force for the g-modes is the buoyancy force, which works only for 
nonspherically symmetric perturbations. 

In a simple stellar model such as a zero-age main-sequence model, the eigen
frequency domain of p-modes is well separated from and lies at larger values 
than the eigenfrequency range of g-modes. The Lamb frequency for a given 
value of e decreases monotonically outward, while the Brunt-ViiisiiHi frequency 
increases outward. At some zone in the star, these two frequencies coincide. 
This frequency level approximately separates the p-mode and g-mode frequency 
domains: Modes with higher frequencies are p-modes; those with lower fre
quencies are g-modes. The propagation zone of p-modes is in the envelope; 
g-modes propagate in the core regions, at least for main-sequence stars. For 
white dwarfs the roles of the p- and g-modes are exchanged. Between the 
lowest-order g- and p-modes (n = 1) for a given degree e (larger than one) 
there exists an/-mode whose eigenfunction has no node in the radial direction 
(see figure 17.2 in Cox 1980 or figure 14.1 in Unno et alI989). Nodes may 
appear, however, in centrally concentrated models. 
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As the central concentration of a star increases during its evolution, the Brunt
ViiisiiHi frequency in the core and hence the eigenfrequencies of g-modes in
crease. When the frequency of a g-mode approaches and exceeds the frequency 
of the f- or a p-mode, the two frequencies undergo an "avoided crossing" (see 
Figure 3 and Section 3.2.3), because two different modes with the same i cannot 
have the same frequency. In evolved stars, the frequency range of the g-modes 
overlaps the one of the p-modes. Any mode whose frequency is in this overlap
ping range has two propagation zones; it propagates as ap-mode in the envelope 
and as a g-mode in the deep interior. Although such a mode has dual character 
its overall character may be dominated by the propagation zone that traps more 
pulsation energy. 

In far-evolved stars, the Brunt-Viiisaia frequency is very large in the core 
and for any nonradial pulsation with a moderate frequency, N2 » (J2 in the 
deep interior. Thus, the radial wavenumber k, is huge there, meaning that 
the eigenfunction oscillates rapidly in space. Because the short wavelength 
of this spatial oscillation causes thermal dissipation of pulsation energy, such 
nonradial oscillations are unlikely to be excited in a giant star. 

For oscillations of large radial order n and small spherical degree, asymp
totic formulations were derived (Vandakurov 1968, Tassoul 1980, Smeyers & 
TassouI 1987): 

( r 1 )-1 

(J � rr(n + i/2) 10 Cs 
dr 

0.6 
0.5 
0.4 

� 
t> 
OIl 0.3 
0 
-

0.2 
0.1 
0.0 

0.03 0.02 

(23) 

0.01 0.00 0.00 
Xc 

Figure 3 Behavior of the oscillation frequencies of a 12 M0 star evolving off the main sequence. 
Time is parameterized by the central hydrogen content Xc on the abscissa. Avoided crossings are 

induced by the growing frequencies of the Gn modes (see text) during central contraction. 
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for p-modes and 

[f(f + 1)]1/2 ['b N 
a � - dr 

nn ' a  r 
(24) 

for g-modes, where N2 > 0 in the zone ra < r < rb. For high�order p-modes, 
it is the separation of the frequencies that becomes equidistant, whereas for the 
g-modes it is the periods (= 2n fa) that approach an equidistant separation. 

An extension of the second-order expansions relying on the Cowling appr
oximation to fourth order was presented by Roxburgh & Vorontsov (1994b). 
Tassoul (1990) and Vorontsov (1992) presented second-order asymptotic an
alyses for p-modes, including the Eulerian perturbation of the gravitational 
potential. For numerical calculations, Berristein et al (1992) suggested an 
interesting method to compute solutions to eigenvalue problems with rapidly 
oscillating eigensolutions. The "small frequency separation," al.n - al+2.n-l, 
whose asymptotic behavior plays an important role in seismic investigations 
was physically discussed by Van Hoolst & Smeyers (1991) and Roxburgh & 
Vorontsov (1994a). 

The asymptotic properties of the nonradial eigenvalue problem has found 
extensive application in recent years. Gough & Toomre (1991) reviewed aspects 
in connection with solar seismology and Brown & Gilliland (1994) elaborated 
on the use of asymptotic theory in asteroseismology mainly of solar-type stars 
and of white dwarfs. 

3.2.3 MODE COUPLING In a simple stellar model with no pronounced cen
tral concentration, as in zero-age main-sequence stars, a single propagation 
zone ("cavity") exists for a g- or p-mode. Thus, a horizontal line in a prop
agation diagram, i.e. at a selected oscillation frequency, passes through only 
one propagation region, either through a P- or a G-region (dotted regions in 
inset of Figure 2). In evolved stars with high density contrast, however, the 
Brunt-Vilisala frequency is high in the core and at its outer edge (in the fJ,
gradient zone where the molecular weight of the stellar matter changes due to 
nuclear transmutations) so that two or more propagation zones, separated by 
evanescent zones, develop (see Figure 2). Therefore, oscillation modes can 
have dual character: They propagate with p-mode properties in the envelope 
and they assume g-mode character in the deep interior. 

Each oscillation mode has usually a main cavity wherein most of the os
cillation energy is confined, even if the mode has more than one propagation 
zone. In such cases, it appeared convenient to classify modes according to their 
properties in the main cavity (Shibahashi & Osaki 1976). For example, gn <Pn) 
modes are trapped in a G-cavity (P-cavity), which has n nodes. Modes trapped 
in the G-cavity of the fJ,-gradient zone are denoted as Gn. 

The oscillation energy density decays exponentially in evanescent regions, 
while it stays constant in propagation regions. Hence, the thicker the evanes-
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cent zones are in mass between neighboring propagation regions, the better is 
the trapping of oscillation energy in a particular cavity. Since the evanescent 
zone between the P-cavity in the envelope and the G-cavity in the J,t-gradient 
zone is thicker for higher-e modes, the distinction between Gn, gn ' and Pn is 
more pronounced for high-l modes. 

As a star evolves, its eigenfrequencies adapt to the variation of the Brunt
Vtiistilti frequency (g-modes) or the Lamb frequency (p-modes). In the J,t
gradient zone at the outer edge of the core, the Brunt-VaisaIti frequency gradu
ally increases during the main-sequence evolution causing the eigenfrequencies 
of the Gn modes (see Figure 3 adopted from Gautschy 1992) to rise. 

Two modes with the same l but different main cavities behave essentially 
independently unless their eigenfrequencies happen to be close to each other. 
From Figure 3 it is clear that the Gn and the Pm modes do not have equal 
eigenfrequencies at any evolutionary phase. They undergo an avoided crossing 
in the modal diagram3 shown in Figure 3. At closest approach, the oscillation 
energy of a mode is partitioned between the P-cavity in the envelope and the 
J,t-gradient G-cavity. Hence, the distinction between the physical properties of 
the two modes is less prominent. Modes at such a stage may be regarded as 
coupled, both being composed of a g-mode part from the /L-gradient zone and a 
p-mode part from the envelope. By artificially suppressing one of the cavities in 
calculating the eigenfrequencies, Aizenman et al (1977) showed that the picture 
of coupling eigenmodes of different cavities indeed applies. Avoided crossings 
were first found by Osaki (1975) in massive main-sequence star evolution. 

An asymptotic analysis of nonradial oscillations casts additional light on 
the relation between the avoided crossing and mode coupling and reveals that 
the avoided crossing is only one possibility of unfolding of eigenfrequencies 
during a close encounter. For an eigenmode with frequency a propagating in 
two cavities, its dispersion relation, satisfying appropriate boundary conditions, 
can be written as 

(25) 

(Shibahashi 1979, section 16 in Un no et al 1989), where E is a small positive 
number that decreases exponentially with increasing thickness of the evanes
cent zone between the two cavities. For E = 0, Equation (25) is satisfied when 
V) (a) = 0 or V2 (a) = O. Let a) and a 2 be the oscillation frequencies satis
fying (25) for E = O. Each of these frequencies corresponds to an oscillation 
mode whose energy is exclusively confined to one of the two cavities. Thus, 
for E = 0 the two modes are independent of each other. 

When the frequencies of modes of different cavities happen to come close 
to each other, coupling between the two modes becomes important if the 

3For a modal diagram we designate representations of oscillation frequencies versus some 
control parameter describing the model sequence. In Figure 3, the central hydrogen content is a 
suitable monotonous variable to parameterize time evolution. 
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evanescent region separating the two cavities is not too thick. We write the 
oscillation frequency a of the coupled system as 

w=d+a, =d+a2+b., 

where b. == a, - a2. Here we consider the case where Idl, 1b.1 « a" a2. 
Substituting these expressions into Equation (25) and solving with respect to 
d, leads to 

b. 
d± = -- ±  

2 

b.2 € 
-+ . 
4 (a'DJ/aa)(a'D2/aa) 

If (0'DJ/oa)(0'D2/oa) is positive, d± takes purely real values. In this case, 
the mode coupling (b. -+ 0) appears as an avoided crossing with two modes 
having slightly different real eigenfrequencies. On the other hand, if (aD, / aa) 
(aD2/aa) is negative and b. is sufficiently small, d± and hence the frequencies 
assume complex values that are complex conjugate to each other. 

The quantity oD / ocr can be shown to be proportional to the energy of oscilla
tion (Cairns 1979, Lee & Saio 1990b). Therefore, an avoided crossing appears 
when an oscillation mode having positive (negative) energy encounters another 
mode with positive (negative) energy, while a complex conjugate pair (insta
bility band) appears if one mode has positive energy and the other has negative 
energy. All the g+ - and p-modes were shown to have positive energies (Lee & 
Saio 1990b), which means that coupling among these modes can generate only 
avoided crossings. 

In a rotating convective core, a g--mode can be stabilized to become purely 
oscillatory. Such a mode has negative energy and, in a mode coupling with 
a g+ -mode of the radiative envelope (Lee & Saio 1989, 1990b), can cause 
complex conjugate eigenfrequencies. Such instability bands resulting from 
mode interactions also occur in differentially rotating cylinders (GlatzeI1987) 
and in stellar pulsations using the nonadiabatic reversible (NAR) approximation 
(Gautschy & Glatzel 1990). 

3.2.4 PULSATIONS IN ROTATING STARS Here we considered pulsations in rotat
ing stars in the adiabatic approximation only. Equations (6)-(8) are combined 
to give 

-(a + mQ)2� + 2i(a + mQ)O x � +0 x (0 x�) +£(�) = O. (26) 

Although we restrict ourselves to uniform rotation, the above equation applies 
also to differentially rotating stars. By taking the scalar product with �* and 
integrating over the whole volume we obtain 

-(a + mQ)2a + (a + mQ)b + c = 0, (27) 
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where 

a == Iv �* . � P d3x, 

b == 2i Iv �* . (0 X �)pd3X, 

and 

c == Iv �* . [.c(�) + 0 x (0 x �)]p d3x. 

The quantities a, b, and c were proved to be real by Lynden-Bell & Ostriker 
(1967). Solving the above equation we obtain 

a+mQ= �(b±.jb2+4aC). (28) 

For a nonrotating star (Q = 0), Equation (28) reduces to 

a = ±If == ±ao· 

Note that the sign of the frequency is not physically important as it changes the 
phase of pulsation only. For slow rotation (ao » Q), 4ac» b2 so that we can 
expand: 

If Ib 2 2 a = ± -+ -- - mQ + O(Q ) = ±ao - mQ(1 - Cn.l) + O(Q ) .  a 2a 
Thus, rotation lifts the (21 + I)-fold degeneracy of the eigenfrequencies com
pletely. The coefficient Cn,t is an integral quantity determined by the stellar 
structure and the eigenfunction of the oscillation mode; its magnitude is usu
ally much less than unity. Second-order effects were studied by Saio (1981) 
and Martens & Smeyers (1986) for uniform rotation, and by Dziembowski & 
Goode (1992) for differential rotation. 

When the rotation frequency Q is comparable to or larger than ao, which 
is to be expected for high-order g-modes, eigenfunctions and eigenvalues are 
considerably modified compared to those in nonrotating stars and new features 
arise (see chapter VI in Unno et al 1989 or see Saio & Lee 1991). A special 
case is the toroidal displacements, characterized by Equation (17). For them, 
e = O(Q3) and hence ao = O. In consequence, Equation (24) leads to 

a + mQ = {�mQ/[l(l + 1)]. 
or 

The next higher terms are of the order n3 (see Papaloizou & Pringle 1978, 
Provost et aI1981). The lower case corresponds to a global Rossby or planetary 
wave. 
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3.2.5 EFFECTS OF M AGNETIC FIELDS The effects of magnetic fields are usually 
treated as small perturbations applied in addition to the conventional adiabatic 
hydrodynamic oscillation problem. Such a procedure applies whenever the 
magnetic pressure remains much smaller than the gas pressure over the domain 
of the eigenvalue problem. Such conditions are easily fulfilled deep in the 
interior of stars but can break down, even for moderate magnetic fields, close 
to the surface. 

In the presence of a magnetic field, the momentum equation (2) acquires an 
additional term owing to the Lorentz force. The linearized form is 

CT2� = -�Vp + V1/I' + .!.Vp' p2 P 
1 

--[(V xB') xB + (V xB) xB']. 
4rrp 

(29) 

In the magnetohydrodynamic approximation and assuming perfect conduction 
in the plasma, the perturbed magnetic field is determined by 

B' (r) = V x (� x Bo) . 

Most of the formal difficulties arise from the specification of the spatial con
figuration of Bo. Particularly laborious expressions arise for non-force-free 
magnetic fields (Goosens 1972, Goosens et al 1976) that deform the equilib
rium structure. Another source of complexity comes from magnetic axes that 
are inclined relative to the coordinate system in which the nonradial modes are 
expanded. 

To find corrections to adiabatic eigenfrequencies of nonmagnetized configu
rations by the influence of a magnetic field, either direct perturbation methods 
(Ledoux & Simon 1957, Unno et al 1989) or variational treatments are used 
(Kovetz 1966, Nasiri & Sobuti 1989). In contrast to the rotational influence, 
magnetic fields of axisymmetric configuration remove m-degeneracy only par
tially as only m2 terms enter the lowest-order perturbation expressions. Hence, 
an eigenfrequency CTn,t of a nonrotating, nonmagnetized star acquires l + 1 
components by the presence of a magnetic field. In contrast to the perturbing 
influence of rotation, magnetic fields also shift the m = 0 component of the 
eigenfrequency. Generally, g-modes experience stronger frequency shifts than 
the p-modes do in B-fields. For arbitrarily aligned axes of magnetic fields or 
of rotation in the coordinate system in which nonradial modes are expanded 
the m-degeneracy can be lifted completely (Goode & Thompson 1992) when 
observed by an inertial observer. 

The perturbation approach has been widely used and extended during the 
past few years, particularly for solar-oscillation analyses (Gough & Thompson 
1990, Goode & Thompson 1992). A detailed analysis of the combined effects 
of rotation and magnetic fields has been done in a study of rapidly oscillating 
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Ap stars by Shibahashi & Takata (1993). Jones et al (1989) performed a fea
sibility study to detect weak [0(105 G)] magnetic fields by their traces in the 
oscillation spectra of white dwarfs. 

3.3 Excitation Mechanisms 
To discuss the excitation mechanisms of pulsations we use, for the sake of 
simplicity, the quasi-adiabatic approximation in which the entropy perturbation 
is evaluated from Equation (9) using the adiabatic relation (12) and adiabatic 
eigenfunctions. This approximation provides reasonable results only when 
nonadiabaticity is small. 

After some manipulation of Equations (6)-(8) and (12), we obtain 

dEw 1M 
doS 1M 

[ 1 ] 

- = oT -dMT = oT 0 € - -'V . (FR +Fc) dMT, (30) 
dt 0 dt 0 P " 

where 

Ew = - (0/)2 + - + - -- - - + -1/1' dM" 
1 J 

[ ( pi )2 g2 ( pi pl)2 pi ] 
2 pes N2 riP P P (31) 

which represents the kinetic and potential energy of the pulsation. (In deriving 
the above equations we disregarded the effect of rotation and convection in 
the momentum equation.) Equation (30) measures the change of the pulsation 
energy by the modulation of the nuclear energy generation rate and of the 
energy flux. 

After integrating over a pulsation cycle, the work integral (30) takes the form 

f dEw W = --dt 
dt 

1( 1M 
[OTT oTT (1 ) oTT (1 ) ] 

= - -8€, - -8 -'V . FR - -8 -'V. Fe dM" 
a o T T P T T p T 

(32) 

where the temporal and angular dependencies of perturbed quantities q are 
factorized as 

oq = Re[8qTyteiut]. 
The real part of the indicated quantity is denoted by Re( . . .  ). The subscript 
r is added to indicate that the quantity is a function of r only. All quantities 
with subscript r are real by the use of the quasi-adiabatic approximation. If 
W is positive the pulsation energy grows during one pulsation cycle, '.e. the 
pulsation is excited (or overstable). 

3.3.1 €-MECHANISM The first term on the right-hand side of Equation (32) 
describes the driving by the €-mechanism, i.e. by the effects of the temperature 
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and density dependence of nuclear burning. After some manipulation, we can 
write 

1

M O
;

r OEr dMr = 1
M E (ET + 

f3

E� 
1
) 

(o;r ) 2 dMr, (33) 

whereET = (alnE/alnT)p(� 4-30),Ep = (alnE /alnp)TC� 1-2),andf3-
1 == (a In T /a In p)s (� 2/3). The particular magnitudes of these parameters 
depend on the types of nuclear burning and on the temperature and density 
regime under consideration. Thus, the terms in Equation (33) always contribute 
positively to the work integral W. Physically, it can be understood as follows: In 
the compression phase, temperature and hence the nuclear energy generation 
rate are both systematically higher than in equilibrium so that matter gains 
thermal energy. During expansion, the nuclear energy generation rate drops 
below the equilibrium value and matter loses thermal energy. This particular 
phasing of energy gain and loss leads to a gradual increase of the perturbation 
amplitudes. 

In the above discussion we assumed that the time scale of abundance changes 
by nuclear reactions was much longer than the pulsation time scale. Hence, 
equilibrium abundances of the involved chemical species could always be as
sumed. If the two time scales are comparable, however, additional perturbation 
equations must be supplied for each of the atomic species involved in the con
sidered nuclear burning cycle (Ledoux & Walraven 1958, Un no et aI 1989). The 
study of Kawaler ( 1988) provides an example of the influence of phase delays 
in generating and destroying chemical elements during a pulsational cycle on 
the destabilization of H-shell burning white dwarfs. 

3.3.2 K-MECHANISM The second term on the right-hand side of Equation (32) 
can be expressed as 

_ 
rM oTr 0 (.!. V . FR) dMr 10 T p r lR 

(

OTr
)

2 d [( "p)] 

oc - - KT+ -- LR dMr+· .. 
o T dr f3 - 1 

(34) 

whereKT = (8InK/8InT)pandKp = (8InK/8Inph. This integral describes 
the action of the K -mechanism. If the radiative luminosity LR is constant as in 
a radiative envelope, a region with 

- KT+-- >0 
d 
( 

Kp
) 

dr f3 - 1 
(35) 

helps to drive pulsation. When condition (35) is satisfied, the opacity per
turbation increases outward so that the radiative luminosity is blocked in the 
compression phase of pulsation. Hence, the zone gains thermal energy in the 
compression phase and it loses thermal energy in the expansion phase. 
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The K-mechanism, due to partial ionization of H and He I and/or He II, is 
responsible for pulsations of the stars in the classical instability strip (see Figure 
1) .  The red variables probably gain pulsation energy from the partial ionization 
of hydrogen. Carbon/oxygen partial ionization is believed to be responsible 
for the oscillations of the hot central stars of planetary nebulae and of the DO 
white dwarfs. The details of the applications to classes of pUlsating stars will 
be provided in Part 2 of this review. 

Recent recalculations of astrophysical opacities had a major impact on stel
lar pulsation theory. The new generation of Rosseland opacity-means, based 
on state-of-the-art microphysics, is described in Rogers & Iglesias (1992), in 
Iglesias et al (1992) for the OPAL project, and in Seaton et al ( 1994) for the 
OP project. The calculations show a significant enhancement over the old Los 
Alamos data (up to a factor of about 3 depending on the density) of the Rosse
land mean opacity at temperatures between about 100,000 and 300,000 K (see 
Figure 4). This new feature is referred to often as the "Z-bump" because it is 
caused by intra-M-shell transitions mainly in Fe and by fine-structure transi
tions in Mg, Cr, and Ni. The results obtained from OPAL and OP agree very 
satisfactorily, considering that the two projects worked completely independent 
of each other and used different physical descriptions for the plasma. 

Based on the new opacity data, one could either eventually identify driving 
mechanisms (fJ Cepheids and B-type pulsators) or improve values for periods 
and period ratios. Again we refer to Part 2 for detailed discussions. 

The third term on the right-hand side of Equation (32) describes the influence 
of the perturbed convective flux. Since convection in stars is turbulent, a correct 
modeling of this term is very difficult (Baker 1987, Unno & Xiong 1993). The 
uncertain convection description enters also through the momentum equation 
(7). Most calculations neglect any perturbation of the convective flux and 
also neglect the influence of turbulent pressure fluctuations. Such an approach 
produces reasonable results for sufficiently hot stars with weak convection 
zones. For example, the blue edge of the Cepheid instability strip and the f3-
Cephei variables can be recovered satisfactorily. However, to obtain the red 
edges of instability regions and to study the pulsations of red variables such 
as the Mira variables a proper treatment of pulsation-convection interaction 
is indispensable. No commonly agreed upon description has, however, yet 
emerged. 

3.3.3 STOCHASTIC EXCITATION Stochastic excitation of nonradial oscillations 
occurs in connection with turbulent flows. The effect of turbulence appears as 
a source term in the wave equation (even in the adiabatic approximation). The 
momentum equation for wave and turbulent motions can be written as 

av I 
- + v . Vv = - Vp - V,I, 
at p 

r , 
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Figure 4 (Left) The "opacity mountain" from OP project data for X = 0.7, Y = 0.28. The independent variables are the logarithms of temperature 
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where v includes the contributions of both oscillatory and turbulent motions. 
Subtracting the time-averaged part from the above equation, differentiating with 
respect to t, and using the adiabatic relation ( 12) for perturbed quantities, we 
obtain a wave equation 

(l2v (I 
-2 + L(v) = --(v . 'Vv) + other nonlinear terms, 
at  a t  

(36) 

where L is a linear operator. The source term (right-hand side) of the wave 
equation is dominated by turbulent motion and hence has a stochastic character 
inherited from the turbulent eddies. 

The stochastic excitation of p-mode pulsations is physically equivalent to 
acoustic noise generation by turbulent eddies. This problem has been exten
sively investigated by Lighthill (1952) for isotropic homogeneous turbulence 
and by Stein (1968) for a stratified convective layer. Goldreich & Keeley (1977) 
were the first to consider stochastic excitation as a viable driving mechanism 
of the solar five-minute oscillations. 

Information on the damping and excitation rates of the solar five-minute 
oscillations is obtained from "line" widths in the oscillation-frequency spec
trum and from the power in each oscillation mode as a function of frequency. 
Such data were presented by Libbrecht (1988). Although recent theoretical 
considerations by Osaki ( 1990), Balmforth (1992), and Goldreich et al ( 1994) 
reproduced roughly observed properties, many uncertainties remain in the the
oretical approaches. For example, Goldreich et al ( 1994) claim that the entropy 
fluctuations expected in turbulent eddies [which are not included in Equation 
(36)] play the dominant role for stochastic excitation, while Osaki (1990) argues 
that the main contribution comes from the turbulent stress on the right-hand side 
of Equation (36). 

The uncertainties result mainly from our poor understanding of the properties 
of turbulent convection in stars. The efficiency of stochastic excitation is very 
sensitive to the convective velocity near the outer boundary, where the char
acteristic velocity of energy-bearing eddies is maximum and the temperature 
gradient departs significantly from the adiabatic one. Accurate observational 
data expected to become available in the near future from the solar five-minute 
oscillations will help improve our understanding of the physical properties of 
turbulence in the outer part of the solar convection zone. 

3.3.4 EXCITATION BY OSCILLATORY CONVECTION Linear convective instabil
ity in a nonrotating spherical star is understood in terms of g--modes (for which 
a2 < 0), which occur whenever a star has a region with N2 < O. In a rotat
ing star, some convective modes tend to be stabilized (section 14.5 in Tassoul 
1978).  Also, as discussed in Section 3 .2.4, in a rotating star g--modes have 
real parts proportional to mQ. In other words, oscillatory overs table g--modes 
can exist in rotating stars. Osaki (1974) suggested that f3 Cepheid pulsations 
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are excited by a resonance between a p-mode and an overstable 8- -mode of a 
rotating star. Later, Lee & Saio (1986, 1987) showed numerically that oscil
latory convective modes couple with high-order g+ -modes of the envelope to 
form an overstable low-frequency (in the corotating frame) oscillation mode. 
Such a mode has large oscillation amplitude both in the convective core and in 
the envelope. Lee (1988) confirmed that the same phenomenon also occurs in 
differentially rotating stars. 

If the coupling between core and envelope is artificially neglected, the in
volved oscillatory convective mode turns neutrally stable in the adiabatic ap
proximation (Lee & Saio 1989), i.e. the convective mode is completely stabi
lized by the effect of rotation. Hence, it is the coupling between an oscillatory 
(stabilized) convective mode in the core and a g+ -mode in the envelope that 
results in an overstable oscillation mode. This interesting phenomenon was 
explained as follows: Lee & Saio (1990b) showed the oscillatory convective 
modes to have negative energy and the ordinary g+ -modes to have positive 
energy. When a negative energy mode couples with a positive energy one, en
ergy can flow from the negative energy mode to the positive energy mode and 
the amplitudes of both parts increase. The energy reservoir being tapped in this 
case is the stars' rotation. Such overstable oscillation modes may be considered 
as an explanation of the short-period light variation of Be stars (Balona 1990) 
and as the driving mechanism for the very slow oscillations in the atmosphere 
of Jupiter (Lee & Saio 1990a). 

3.3.5 TIDAL INTERACTION The tidal interaction between binary stars can be 
studied in the framework of forced nonradial oscillations on the individual 
components of the system. If the binary orbit is close to circular and the 
rotation of the components is synchronous with the orbital motion, then the tidal 
deformation becomes stationary and induces an equilibrium tide on the stars, 
which remain always in hydrostatic equilibrium. For nonradial oscillations 
in stationary, tidally deformed stars see Chandrasekhar & Lebovitz ( 1963), 
Denis (1972), Saio (1981), and Martens & Smeyers (1986). Perdang ( 1988) 
performed interesting ray tracings, appropriate for geometrical acoustics, in 
deformed stellar configurations to search for spatially chaotic solutions. 

If, however, the orbit is elliptic, stellar rotation is not synchronous, or the 
rotation axis of the stars is not perpendicular to the binary orbit, then the tidal 
force becomes time dependent and induces fluid motion in a coordinate frame 
comoving with the star. Under such circumstances the induced dynamical tide 
can be described as a forced nonradial oscillation. The modified nonradial 
dynamics of a rotating star under the influence of a time-dependent external 
gravitational potential Ucomp can be written as 

- (a + mQ)2� + 2i(a + mQ)n x � + n x (n x �) 
= -L:(�) + V Ucomp(r, e ,  </1; t). 
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The external potential Ucomp is usually expanded in terms of spherical harmonics 
that account for the geometrical properties of the binary orbit. Each spherical 
harmonic is additionally expanded in a Fourier series to approximate the time 
dependence of the gravitational field (see Zahn 1977), which then leads to the 
theory of dynamical tides. 

Cowling ( 1941 )  realized that low-frequency (free) eigenmodes of a binary 
component can enter into resonance with forced oscillation modes. Such reso
nances are believed to significantly influence circularization, synchronization, 
and apsidal-motion rates (Paploizou & Pringle 1980, Smeyers et al 1990) in 
binary stars through exchange of orbital and oscillation energy. Zahn ( 1966) 
found that dynamical tides can be damped by turbulent viscosity in convective 
stellar envelopes. For radiative envelopes, the nonadiabatic damping inherent 
in partial dynamic tides is believed to be responsible for producing significant 
torques in the stars (Zahn 1975, Savonije & Papaloizou 1983, Goldreich & 
Nicholson 1989) that tend to synchronize rotation with orbital motion. When 
it was realized that rotation influences the eigenfrequencies of g-modes and 
induces an additional mode spectrum (toroidal modes), rotation of the binary 
components was included in studies of forced oscillations, e.g. by Papaloizou 
& Pringle (198 1 )  and Rocca ( 1982, 1987). 

Alexander ( 1987, 1988) accounted self-consistently for the interaction be
tween free oscillation modes of the binary components and the orbital motion 
in his perturbation-Hamiltonian approach. In this ansatz, the binary orbit is no 
longer kept fixed: It changes because of energy transfer from the binary orbit 
to normal modes of the stars. 

3.4 Strongly Nonadiabatic Pulsations 

Stellar pulsation can be considered, in its simplest formulation without com
plications by rotation, magnetic fields, etc, as a thermo-mechanical, coupled 
oscillator problem. A suggestive way of presenting the radial pulsation equa
tions in this way can be found in section 7 of Gautschy & Glatzel ( 1990). (The 
formulation was motivated by the decomposition of normal modes suggested 
in Pesnell & Buchler 1986.) The coupling of the system depends on the ratio 
of the thermal (rth) to the dynamical time scale (rdyn) at a given location in the 
star. This ratio is typically large throughout most of a stellar envelope and drops 
below unity only for the outermost regions. Hence, nonadiabatic effects often 
influence the damping rate of an oscillation mode but the oscillation period, 
at least of low-order modes, is affected insignificantly. The quasi-adiabatic 
approximation of the stellar pulsation problem can yield satisfactory solutions 
under such circumstances. 

Whenever the thermal time scale rth � 4rrr2p/).rcvT/Lr of a region with 
radial extension I1r of the star happens to become comparable to the sound
traveling time through that region (rdyn � I1r / cs), however, an efficient ex
change of wave energy and thermal energy of the traversed stellar material 
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takes place. We know of types of pulsating stars for which the ratio rlh/ rdyn is 
small over a significant part of the propagation region of the pulsation modes 
(e.g. helium stars, very massive stars advanced on the AGB, some post-AGB 
stars). As can be seen from the definition of the thermal time scale, such stars 
have preferentially high luminosity-to-mass ratios. For such objects, the oscil
lation periods calculated fully nonadiabatically may differ significantly from 
the adiabatic ones. The growth/damping rates of perturbations can become sig
nificant compared with their oscillation frequencies. Under such circumstances 
the use of the work integral-which is based on the notion of a well-defined 
cycle in order to define appropriate time averages-becomes problematic. For 
an alternative discussion see Glatzel (1994). 

It was also in stellar models with strongly nonadiabatic pulsations where the 
so-called strange modes were first encountered (Wood 1 976, Cox et al 1980, 
Saio et al 1984). In modal diagrams additional modes were found to those 
expected from adiabatic considerations. The strange modes showed a devi
ating frequency behavior compared to the "regular" ones by crossing them 
when the control parameter of the model series varied. Actually, there was no 
real crossing occurring in the sense of a local degeneracy of frequencies, but 
two solutions of unfoldings were found (Gautschy & Glatzel 1990): either an 
"avoided crossing" or an "instability band" (see also Section 3.2.3). A detailed 
description of these properties can be found in Gautschy & Glatzel. 

Zalewski (1992) demonstrated the effect of the particular formulation of the 
outer boundary conditions to the linear eigenvalue problem on the magnitude 
of the frequencies of the emerging strange modes when he calculated a se
ries of low-mass supergiant models. He also emphasized the importance of 
strong nonadiabaticity in the stellar envelopes for strange modes to occur and 
attributed their existence to sufficiently strong and well-localized entropy per
turbations in ionization zones. Another way of looking at strange modes is 
to consider them as being waves that are trapped in parts of the acoustic cav
ity of the stellar envelopes. Such a trapping can be induced by strong spatial 
gradients of those physical quantities that determine the acoustic cavity, and 
they can generate additional spectra when waves are accidentally able to de
velop an appropriate phase behavior to match boundary conditions. Despite 
recent efforts (Glatzel 1994), a fully satisfactory explanation of the strange 
modes has not yet been reached, partially due to the complexity of the fully 
nonadiabatic pulsation problem even in the linear approximation. Examining 
the physics behind the instabilities connected with strange modes remains a 
topic of active research. Strange-mode-like features have also been recovered 
in adiabatic radial oscillations of stars (Kiriakidis et al 1993, Gautschy 1993). 
Analyses of the adiabatic acoustic cavities indeed support the picture of partial 
trapping of waves to form additional oscillation spectra, which are then termed 
strange modes. 
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The different excitation possibilities for stellar pulsations presented in Sec
t ions 3.3 and 3.4 constitute the physical basis of Part 2 of this review. There 
we attempt, from the viewpoint of stellar evolution, to understand the observed 
properties of pulsating stars within this framework. 

3.5 Nonlinear Pulsations 
Actual stellar pulsations are inevitably · nonlinear and analytic solutions are 
possible for very idealized systems (see Cox 1974) only. Most investigations 
of nonlinear pulsations rely on numerical analyses. Recently, some semi
analytical approaches to nonlinear pulsations were developed. For a recent 
review, see Buchler (1993). 

Christy (1964) was the first to apply numerical hydrodynamic simulations to 
stellar pulsations. He considered the temporal behavior of a pulsating stellar 
envelope as an initial-value problem. For most classical pulsators, the growth 
time of the amplitude of the pulsation is much longer than its period. To 
get the limiting amplitUde characteristics by direct hydrodynamic simulation, 
it is thus necessary to compute a large number of pulsation cycles. Stobie 
( 1969) reduced the amount of computing time for such a project by artificially 
amplifying the amplitude. But even with this technique, a few dozen periods 
had to be followed before a Cepheid model arrived at its limit cycle. A different 
path to obtain strictly periodic pulsations was proposed by Baker & Sengbusch 
(1969). In their method, the structure of the stellar envelope is solved for 
iteratively at a number of phases of an appropriately estimated pulsation period . 
In this extended boundary-value approach, the pulsation period appears as an 
eigenvalue of the problem. The original method had numerical difficulties in 
the most superficial layers ; these were overcome by modifications introduced 
by Stellingwerf (1974). His approach allowed for the evaluation of the stability 
of the nonlinear limit cycle (Ploquet stability). Stellingwerf (1975) applied 
the method to RR Lyrae stars and showed that their linear stability behavior 
was insufficient to predict their final nonlinear behavior, in particular for the 
regions on the HR diagram where several modes are excited simultaneously. 
For example, inside the instability strip of RR Lyrae stars a region exists where 
both the fundamental and the first-overtone mode are excited simultaneously. 
Which pulsation mode is eventually selected by the star depends seemingly on 
the mode in which the star's pulsation is initiated (also known as the hysteresis 
effect). 

Because nonlinear pulsation calculations require large amounts of computer 
time, the number of spatially distributed grid points is typically much smaller 
than what is used in linear analyses. For appropriate numerical resolution of 
important physical processes the distribution of the grid points is, however, 
crucial. In conventional hydrodynamical codes, grid points are attached to 
mass shells, i.e. to fixed Lagrangian coordinates. Lagrangian grids become 
inaccurate when physical variables vary rapidly and when such regions move 
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across different mass shells during a pulsation cycle. For example, the par
tial hydrogen-ionization zone or shock waves cause such problems. To avoid 
inaccuracies by steep, unresolved gradients of important physical quantities, 
adaptive-grid schemes were developed (Castor et al 1977). Aikawa & Simon 
( 1983) wrote a computer code in which the temperature acts as the independent 
variable, at least throughout the partial hydrogen-ionization zone. This resulted 
in a numerically well-resolved driving region as the grid followed the ioniza
tion front during a pulsation cycle. Dorfi & Feuchtinger (1991 )  and Gehmeyr 
(1992a, b) opted for a more general scheme: The distribution of grid points is 
calculated together with the spatial structure of the stellar model at each time 
step. A delicate problem with non-Lagrangian grid points is, however, that ad
vection errors of the grid can amount to a considerable fraction of the pulsation 
energy even if the relative error is kept very small. Deep in the interior, energy 
is much less than the internal energy; however, this is not the case far out in the 
envelope. In adaptive meshes, small errors can easily propagate through the 
grid and hence across the models and cause numerical difficulties at unexpected 
places. 

At present, realistic nonlinear hydrodynamic codes are all one dimensional. 
Thus, only radial pulsations, devoid of any coupling with nonradial modes, can 
be simulated. Only Deupree (1974) attempted to simulate nonlinear, nonradial 
pulsations in f3 Cep stars with a two-dimensional nonlinear hydrodynamic code. 
For better physical insight into nonlinear dynamics of stellar pulsations a semi
analytic approach was developed in which the radial displacement is expanded 
in linear pulsation modes (Papaloizou 1973, Takeuti & Aikawa 1980, Perdang & 
Blacher 1984). Nonlinear coupling processes were included with a perturbation 
analysis by retaining second- and third-order amplitude terms (Vandakurov 
1 977, Dziembowski 1982, Buchler & Goupil 1984, Dappen & Perdang 1985). 
The velocity field is assumed to be a superposition of linear pulsation modes: 

v = L (Akukeiukt + A�u�e-iukt) , 
k 

where the Uk are velocity eigenfunctions of linear pulsation modes, the O"k are 
the real parts of linear eigenfrequencies, and the Ak are time-dependent ampli
tudes (which include the effect of linear growth rates). An asterisk denotes the 
complex conjugate of a quantity. When the above form is substituted into the 
governing equation for the velocity, nonlinear terms generate contributions pro
portional to exp[i(±O"k ± O"k' )t] (second-order terms), exp[i(±O"k ± O"k' ± O"k" )t ] 
(third-order terms), etc. As an example, consider a weakly nonlinear pulsation 
with frequency 0"1 . For second-order terms to reproduce a temporal behavior 
comparable with the main pulsation the following resonance conditions should 
be satisfied: 0"1 � 0"2 + 0"3 or 0"1 � 20"2. Far from a resonance between 
second-order terms, third-order terms can still develop a time dependence of 
exp(±iO"It). The resulting terms are then proportional to IAk l2Al or IAk l2At 
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for all values of k. Thus, such a case involves a large number of terms in general 
and is very laborious to treat analytically. 

Consider a three-mode or two-mode resonance (coupling). We characterize 
the deviation from exact resonance by Ila = at - (a2 + a3) for a three-mode 
resonance, or by Ila = at - 2a2 for a two-mode resonance. Multiplying 
the momentum equation by exp( -iakt) (k = 1 ,  2, 3), integrating over the 
stellar volume, and averaging over a time scale longer than 1/  at but shorter than 
1 /  Ila, we obtain equations governing the temporal evolution of the amplitudes, 
A t .  A2, and A3-the amplitude equations (Dziembowski 1 982): 

dAt �4� 
-- = Kt A t  + EHt A2A3e , 
dt 

dA2,3 
A* i4<rt -- = K2 3A2 3 + H2 3A\ 3 2e , 

dt 
" , . 

where E = 1 for three-mode resonances and E = 0.5 for two-mode resonances. 
The Kk stand for linear growth rates and the Hk denote coupling constants. For 
example, 

H oc f yml*ym2 ym3 dO I II 12 13 ' 
which are nonzero only when mt = m2 + m3 and li2 - i3 1 :::: i t  :::: li2 + i3 1 
(Messiah 1962). This shows that a radial mode (It = mt = 0) can couple 
with two nonradial modes with i2 = i3 and m2 = -m3. By such a coupling, 
a linearly overstable radial mode can excite two nonradial modes of lower 
frequencies (parametric resonance), or two linearly overs table nonradial modes 
can excite a radial mode of higher frequency (direct resonance). The possibility 
of excitation of pulsations through nonlinear coupling was first discussed in 
detail by Vandakurov (1977, 1979). 

Results from amplitude-equation analyses are of importance for questions 
concerning the modal selection in variable stars such as in 0 Scuti variables 
or in white dwarfs where many more unstable modes are calculated in linear 
analyses than are observed. Also, the amplitude-limitation mechanisms in low
amplitude pulsators such as 0 Scuti stars are currently believed to be related to 
nonlinear mode coupling. 

4. RELATIVIS TIC PULSATIONS 
The influence of relativity on stellar oscillations needs to be considered for very 
massive andlor very compact astronomical objects. Even when the structure 
of the object itself is not yet strongly influenced by general-relativistic effects, 
the perturbation of the dynamics of this structure may already be significantly 
affected. In contrast to pulsations in the Newtonian framework, in addition to 
the perturbation of the equilibrium configuration, the perturbation of space-time 
metric in which the object is embedded also needs to be included in the analysis. 
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Radial pulsation studies address mainly the dynamical stability properties 
of objects for which the quantity G M */ c2 R* is no longer small. For ex
ample, this applies to supermassive stars with masses above 1 04Mo, which 
were postulated to exist by Hoyle & Fowler (1963) to explain the properties 
of quasars. Chandrasekhar ( 1964) formulated the eigenvalue equations in the 
general-relativistic framework for radial perturbations of spherically symmetric 
fluid configurations in the adiabatic approximation. A self-adjoint differential 
equation can be derived for the displacement from equilibrium. All other 
quantities such as pressure, density, and metric coefficients can be deduced 
therefrom. With a few modifications in the occurring coefficients, the operator 
describing the boundary-value problem has the same mathematical properties 
as the one describing the Newtonian, adiabatic radial pulsation problem. In 
the post-Newtonian approximation (Chandrasekhar 1964), a slightly modified 
dynamical stability condition for adiabatic fluid motion was derived via a vari
ational procedure: 

2GM* 
3 (rl ) - 4 >  JC22' 

c R* 
where JC is a positive definite number (assuming values between 0.425 for an 
n = 1 and 1 . 1 25 for an n = 3 poly trope) and WI ) denotes an appropriately de
fined spatial mean of the adiabatic exponent. The above form of the dynamical 
stability condition shows that general relativity has a destabilizing effect. The 
radii at which a dynamical instability occurs is usually significantly larger than 
the Schwarzschild radius of the object. Nonrotating supermassive stars above 
about 4 x 1 05M 0 were found unstable due to purely relativistic effects. 

Demaret (1975) took into account nonadiabatic effects and terms due to de
viations from thermal equilibrium of quasi-statically contracting supermassive 
stars. In the post-Newtonian formalism, instabilities seem to set in via vibra
tional modes rather than through monotonically growing ones. The oscillatory 
contributions in the eigensolutions are due to relativistic corrections. Scuflaire 
(1976) stressed that adiabaticity is a poor approximation for describing the ac
tual behavior of supermassive star models. At the onset of the relativity-induced 
instability the effects of secular and dynamical modes are so immersed that a 
clear distinction between them becomes futile (see also Osaki 1972, Demaret 
& Ledoux 1973). 

For compact stars like white dwarfs and neutron stars (Thorne 1966, Shapiro 
& Teukolsky 1983) the constitutional relations such as the equation of state 
(for neutron stars), inverse �-decay (for iron white dwarfs), or pycnonuclear 
reactions (for carbon white dwarfs) strongly influence their constitution. The 
general-relativistic dynamic instability thus might not be the crucial factor de
termining the mass limits under these circumstances. For the pycnonuclear 
reaction rates there still are, however, considerable uncertainties (Salpeter & 
Van Horn 1969, Schramm & Koonin 1990, Ogata et al 1991). For massive 
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helium or carbon white dwarfs the efficiency of the pycnonuc1ear energy re
lease at low densities might decide whether the stars can be prevented from 
contracting to the critical density (� 2 X 1010 g cm-3) where the relativistic 
dynamical instability sets in. 

Nonradial oscillations of relativistic objects are of interest as possible sources 
for gravitational-wave emission if the spherical degree e 2: 2. Hence, even in the 
adiabatic approximation where Newtonian stellar oscillations are purely oscilla
tory (i.e. at == 0) relativistic oscillations can give rise to complex eigensolutions 
with finite damping rates. Such modes are termed "quasi-normal modes" in the 
literature. The problem of completeness of quasi-normal modes was discussed 
in Price & Husain ( 1992). The quantitative treatment of nonradial, relativistic 
oscillations is much more involved than that of radial ones. In the nonradial 
problem, the perturbations of the metric coefficients can no longer be derived 
directly from the displacement fields for the matter. Thorne & Campolattoro 
(1967) proposed a fifth-order system of equations, which was later reduced to 
a nonsingular, and physically more intuitive, fourth-order system by Detweiler 
& Lindblom (1985). In the fourth-order system, two equations describe the 
dynamics of the matter and the other two the perturbation of the space-time 
metric. Ipser & Thorne ( 1973) provide an account of the early developments 
of the relativistic nonradial-oscillation formalism. 

The very fact of a coupling of the two physical quantities-the fluid con
figuration of the astronomical body and the space-time metric-leads to the 
generation of a family of rather strongly damped eigenmodes (w-modes) in 
space-time, whose origins required substantial effort to explain. As the im
portance of relativity (essentially GM*/c2 R*) decreases, the w-modes increase 
their imaginary parts, which drift off to infinity in the Newtonian (uncoupled) 
limit (Kokkotas & Schutz 1992). 

Although the equations given by Thorne & Campolattoro (1967) and 
Detweiler & Lindblom (1985) are suitable for describing p- and g-modes, 
they were found to be inappropriate for numerically calculating g-modes. 
McDermott et al (1983) introduced the concept of the "relativistic Cowling 
approximation," which reduced, through neglecting the Eulerian perturbation 
of the space-time metric, the problem to a system of equations for the dynamics 
of the fluid system only. Finn (1988) proved that, for the relativistic Cowl
ing approximation, the same statements regarding the modal behavior of a star 
apply as in the Newtonian case. 

Neutron star oscillations were proposed to explain quasi-periodic variability 
found in radio-pulsar and X-ray burster signals. The expositions of Van Horn 
(1980) and McDermott et al (1988) are informative sources on the observational 
background. 

The theoretical evidence that neutron stars develop solid crusts close to their 
surfaces early in their evolution (Shapiro & Teukolsky 1983) allows for the 
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possibility of involved modal spectra of oscillations encountered in such ob
jects. In addition to the well-known spheroidal p- and g-modes, shear modes 

also develop whose main restoring force is shear stress of the crust. Even in non
rotating stars the nonvanishing shear modulus of the crust is sufficient to lift the 
frequency degeneracy of the toroidal modes. McDermott et al (1988) studied 
the impressive phenomenology of oscillations of toroidal and spheroidal types 
in fluid-only as well as in three-component neutron-star models (fluid core, solid 
crust, and fluid surface regions) in the Cowling approximation. Schumaker & 
Thorne (1983) derived general relativistic equations facilitating the description 
of toroidal modes induced by possible solidified regions inside neutron stars. 
Contributions of nonvanishing shear moduli to even-parity (spheroidal) modes 
were included in the fully relativistic oscillation equations by Finn (1990). 

In multicomponent neutron star models, the number of independent g-mode 
spectra is controlled by the number of separate fluid regions. In the three
component models two g-mode spectra occur: one defined in the surface region 
and one defined in the core of the neutron star. In addition to the shear modes 
(spheroidal and toroidal), which are essentially confined to the crustal region, 
interfacial modes also appear. These only have significant amplitudes very 
close to the fluid/solid and solid/fluid interfaces. McDermott et al (1988) and 
Carroll et al (1986) identified only one mode of interfacial type at each interface. 

Even in isentropic neutron star models the degeneracy of the g-mode frequen
cies at zero can be lifted due to finite density jumps at locations of composition 
changes in the interior. The Baym, Pethik & Sutherland (197 1) equation of 
state, for instance, predicts a number of first-order phase transitions in fully 
catalyzed matter. Finn (1987) studied g-modes at density discontinuities, ap
plying his general relativistic "slow-motion approximation" to perfect fluid neu
tron star models with a simplified discontinuous equation of state. Strohmayer 
( 1993) performed an analysis of the modal response to a density discontinu
ity in three-component neutron-star models employing a Newtonian Cowling 
approximation. Both authors agree that, depending on where the density dis
continuity appears within the neutron star, the induced discontinuity modes 
may have frequencies comparable with those of g-modes generated by a finite 
entropy gradient in the star. If g-modes should ever be detected in neutron stars, 
the possible mode interactions between the two g-mode families might serve 
as a useful tool for diagnosing the equation of state. 

In fully relativistic calculations, the damping of oscillation modes by gravita
tional-wave radiation has been calculated self-consistently (e.g. Thorne 1969, 
Lindblom & Detweiler 1983) in the form of a complex-valued boundary
eigenvalue problem for quadrupole f- and p-modes. From the derived damping 
times, of the order of tenths of seconds, it seems unlikely that such f- and 
p-modes can be directly observed in neutron stars. Other damping mecha
nisms, such as neutrino damping, electromagnetic radiation damping due to a 
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magnetic field frozen into the oscillating neutron star matter, nonadiabatic ef
fects, or internal friction and viscosity were hitherto treated in a quasi-adiabatic 
approximation. 

Carroll et al (1986) included strong magnetic fields into the pulsation anal
yses but for a simplified geometry, approximating in cylindrical symmetry the 
footing region of a dipole magnetic field on a neutron star. They recovered 
very interesting mode interactions involving Alfvenic modes generated by the 
frozen-in magnetic field of the neutron star and hydrodynamic modes, which 
were substantially modified by the presence of strong magnetic fields. 

Superfluidity is not yet explicitly accounted for in the equations implemented 
in the stability analyses of neutron stars. Consequently, phenomena connected 
with particular properties of superfluids (such as vortex oscillations; Ruderman 
1970) have not yet been investigated in a self-consistent manner. 

Rotation not only lifts the m degeneracy but also couples spheroidal and 
toroidal modes. A first-order rotational perturbation ansatz for multicompo
nent, slowly rotating neutron star models by Strohmayer ( 1991 )  showed that 
the mixing of spheroidal and toroidal components in describing rotationally 
perturbed eigenfunctions modifies the damping of the modes. For example, 
in the nonrotating case, purely toroidal modes will gain spheroidal (and hence 
radial) components when rotationally perturbed; this then induces damping 
due to neutrino cooling or possibly gravitational-wave radiation, both of which 
are ineffective in a nonrotating model. But because rotation periods of neutron 
stars range from milliseconds to seconds, the approximation by a power-series 
expansion in n/w (see Section 3.2.4) of the rotationally modified oscillation 
frequencies can fail for almost any kind of mode family. A reliable, general
purpose pulsation-rotation coupling scheme still needs to be developed. 

It was realized by Chandrasekhar (1970), and shown to be a generic re
sult by Friedman & Schutz (1978), that all rotating inviscid stars are subject 
to a secular instability due to gravitational-wave radiation. The critical ro
tation frequency n above which gravitational-radiation instability sets in is 
roughly proportional to m-1/2, where m is the azimuthal order of the mode. 
For quasi-Newtonian stars in particular, the growth rate of the gravitational
wave instability is so small that essentially any kind of dissipation mechanism 
stabilizes the star. Viscous forces normally grow as the spatial gradients of 
the perturbations grow; hence, viscous dissipation grows with increasing de
gree m. Thus, large enough viscosity can stabilize rapidly rotating stars. For 
neutron stars, however, with their relativistic structure and the prevailing ex
otic physical conditions, it is not clear a priori whether viscosity indeed limits 
their rotation rates. Numerical methods to study sectorial modes in rapidly 
rotating neutron stars, solving the full eigenvalue problem for the rotating, 
Newtonian fluid configuration, were developed by Ipser & Lindblom ( 1990). 
First-order post-Newtonian corrections to the Newtonian frequencies in rotating 
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stellar models were recently provided by Cutler (199 1 )  and Cutler & Lindblom 
( 1992). 

Calculations by Ipser & Lindblom ( 1991 )  indicated that for temperatures 
:s 1 07K and � 5 ·  1 010 K there is no way for gravitational-radiation instabilities 
(through an e = +m mode) to develop before reaching the break-up rotation 
rate for a slightly aged neutron star that is rigidly rotating. Only for neutron stars 
rotating close to the break-up speed (� 0.95 x Qcrit) do m = -e modes induce 
a viscosity-driven instability (Lindblom 1987). Due to the large uncertainties in 
describing quantitatively the physical conditions prevailing in compact objects 
it remains uncertain whether such stars can indeed be sources of gravitational 
radiation if heated up, as might happen, for example, during an accretion process 
or if such radiation escapes only during relaxation oscillations excited by an 
ensuing thermonuclear flash. 

5 .  HYDROGEN-DEFICIENT STARS 
Hydrogen-deficient stars are usually luminous, with luminosities between 103 
and 104 L0' and have a very low H abundance in their spectra (typically nHI nHe 

� 10-4). Some of them are also C and 0 rich. The R CrB-like stars, having ef
fective temperatures below � 104 K, show IR excesses possibly caused by dust 
envelopes, and they suffer spectacular luminosity drops of several magnitudes, 
which are attributed to dust condensations in the circumstellar envelopes. The 
extreme He (EHe) stars are typically hotter than 104 K and show abundance 
properties similar to those of R CrB stars except for the dust envelopes and 
the associated phenomena, which seem to be missing. The nomenclature for 
the different subgroups of hydrogen-deficient stars is far from consistently used 
in the literature. Reviews of many important aspects of these stars can be found 
in the Proceedings o/the [AU Colloquium No. 87 (Hunger et aI 1986). 

More than a dozen H-deficient stars are observed to exhibit semiregular 
photometric and radial-velocity variations. Due to the large range of effective 
temperatures the time scales of variability range from fractions of a day (V652 
Her, 0. 1 1  d) to tens of days (R CrB � 40 d, RY Sgr � 38 d; see Lawson et al 
1990). For some of the stars secular period changes have been reported, but 
these are still controversial (Lombard & Koen 1993). The pulsation aspects of 
H-deficient stars were recently reviewed by Saio (1986, 1990). 

The pulsation hypothesis explaining the variability of H-deficient stars is 
supported by the decrease of their periods with increasing Teff (Saio & Jeffery 
1988, Lawson et aI 1990). For homologous stars at the same luminosity and 
with the same mass there is a strict linear relation between log P and log Teff. 
All H-deficient stars show high Lj M ratios, between 103 and 104. 

The evolutionary state of the H-deficient stars is not known. Two scenar
ios that might account for the most stringent constraints are in discussion. 
SchOnberner ( 1977) suggested helium stars to be remnants of post-AGB stars 
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with masses around 0.7 M0. Mechanisms accounting for the complete re
moval of the hydrogen-rich envelope to produce chemical abundances compat
ible with those observed in H-deficient stars have not been found (Schonberner 
1 986). The presently favored scenario proposed by Webbink (1984) and Iben & 
Tutukov (1985) invokes the merging of He and C-O white-dwarf binaries as 
the origin of C-rich, H-deficient stars. The theory is still far from quantitative, 
and it is not clear if the production rate of such mergers within a Hubble time 
is sufficient to account for the observed number of H-deficient stars (see e.g. 
Renzini 1990; Then 199 1 ,  his Section 13;  Bragaglia et al 1990) and if the re
sulting masses are compatible with those derived from pulsation analyses. The 
observed H-deficient binaries (HdB) show all only weak carbon features. All 
observed EHe stars with a strong carbon signature in their spectra are, in con
trast, single stars. Jeffery et al ( 1987) take these results as evidence supporting 
the double-degenerate merging scenario. The H-deficient binaries, on the other 
hand, are believed to be well understood in the framework of mass-transferring 
binary star evolution (Delgado & Thomas 198 1 ). 

An intriguing observational fact is the unusually broad temperature range 
over which H-deficient stars are found to be variable. The instability region 
extends at least from log Teff � 3.7 to 4.4. However, the classical instabil
ity strip has its blue edge at about 10g Teff = 3.8 (for log L/L0 = 4). Many 
concepts used in connection with the classical pulsators are derived from adia
batic or quasi-adiabatic considerations and must be revised when dealing with 
H-deficient stars. Their high L/ M ratio makes their envelopes highly nonadi
abatic, which influences not only stability properties significantly but also the 
pulsation periods. For some time (see Saio et al 1984 and references therein) it 
has been known that in addition to the modes expected from adiabatic analyses, 
other oscillation modes are recovered in linear, nonadiabatic calculations that 
have no counterparts in the adiabatic approximation. These "strange modes" 
were identified as the sources of instability, especially at high temperatures 
by Gautschy & Glatzel ( 1990). The strange modes are also responsible for 
very complicated modal diagrams with crossing and interacting modes; such 
an intricate behavior of eigenmodes was previously known only from nonra
dial pulsations where different mode families can cross each other. Both radial 
modes and low-e, low-order nonradial modes were found unstable (Glatzel & 
Gautschy 1992). Jeffery & Heber (1992) showed the existence of nonradial 
modes in a H-deficient star from its line profile variations. The width of the 
instability region recovered from the linear stability analyses is in good agree
ment with observations. A high enough L / M ratio (resulting in luminosities 
above about 5 x 103 L0 for the masses appropriate for H-deficient pulsations) 
seems to be a sufficient condition for the instabilities to occur. Below about 0.7 
M0 the instabilities disappear. The problem case of V652 Her, which lies at a 
low luminosity of about 103 L0, always resisted the modeling of its pulsational 
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instabilities with the old Los Alamos opacity data. Saio (1992) succeeded in 
finding unstable modes having periods in agreement with observations by using 

the new OPAL opacity tables. Saio's result was also sensitive to the assumed 
heavy element abundance, an aspect not essential in the more luminous H
deficient stars. Indeed, the destabilizing factor for V652 Her is the Z-bump 

in the new opacity data. Radial modes in all other H-deficient variables are, 
on the other hand, excited by the influence of the He ionization zone, which 

not only destabilizes the modes but also traps them efficiently in the outermost 
layers and reduces radiative damping. A fully consistent understanding of 
the working of strange modes, in particular of their instabilities, is not yet 
available (see also Section 3.4). An important ingredient for the occurrence 
of strange modes, deduced from numerical calculations, is a sufficiently high 
Lj M ratio. Saio & Jeffery (1988) concluded that the nonvariable EHe stars 
tend toward smaller L / M values than do the variable ones. Not understood is 
the fact that the visible components in HdB variables have systematically higher 
masses, deduced from pulsation analyses, than the single H-deficient stars. 

The nonlinear pulsation simulations of H-deficient stars by Saio & Wheeler 
(1985) (for earlier attempts see the references therein) did not show limit cycles: 
For the very cool stellar models at around log Teff = 3.7, the amplitudes grew 
without bound. The hotter models relaxed into (rather noisy) limit cycles, but 
the light amplitudes were significantly higher than those observed for these stars. 
Fadeyev (1990) extended the model grid for H-deficient stars to temperatures 
exceeding 104 K. For models with L / M > 104 he found unstable modes at very 
high effective temperatures to be very much in agreement with the predictions 
from linear theory. Fadeyev's simulations also suffered from light amplitudes 
that were too large; however, these decreased at higher effective temperatures. 
Some observations hint at the possibility that a finite-amplitude pulsation can 
trigger the major luminosity drops ofR CrB stars. Recently, Lawson et al (1992) 
found that V852 Cen always starts its luminosity descents at approximately the 
same pulsation phase. For the same star, Clayton et al (1993) found that dust 
formation close to the surface occurs at the pulsation phase of maximum light. 
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Any Annual Review chapter, as well as any article cited in an AnnUIJI Review chapter, 
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