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I. COUPLED HARMONIC OSCILLATORS

We consider a chain of N particles of mass m interact-
ing through harmonic springs (spring constant K). Dif-
ferent boundary conditions can also be considered, either
closed ones (ens attached to walls), or boundary ones (a
chain forms a circle). Ignoring, for a moment, boundary
conditions, the Newton’s equation of motion for the n-th
particle (n = 1, ..., N) takes a form

m
d2

dt2
un(t) = −K(un(t)− un−1(t))−K(un(t)− un+1(t))

= −K(2un(t)− un−1(t)− un+1(t)),

where un(t) denote the particle displacements from the
equilibrium (ground state) configuration.

II. MATRIX NOTATION

The notation is considerably simpler in matrix form,
where a the particle displacements un are regarded as
components of a column vector

u =




u1

.

.

.
uN


 ,

and the inter-site interactions form a matrix

M =




2K −K 0 −K
−K 2K −K 0 0
0 −K . .

0 . . . 0
. . −K 0

0 0 −K 2K −K
−K 0 −K 0




.

This precise form corresponds to a circular chain, where
the particle 1 interacts with the particle N on the other
side of the chain. In other words, this is a band matrix,
where only the diagonal and two neighboring rows have
nonzero matrix elements (except for the matrix elements
M1N = −K and MN1 = −K which describe the spring
between particles 1 and N).

In this notation, we can write the entire set of N equa-
tions as a single matrix equation

m
d2

dt2
u(t) = −Mu(t).

This perspective also gives us a nice geometric interpre-
tation of the mechanical motion: as time evolves, the tip

of the Ndimensional vector u(t) traces a trajectory in the
Ndimensional space. As we will see, the sound modes,
i.e. the eigenmodes of this problem, will correspond to
motion along straight lines, while superposition of many
sound modes can produce a very complicated trajectory
that describes, for example, music!!!

How to solve such a set of equations? We already know
the solution for the case N = 1, which reduces to a stan-
dard linear harmonic oscillator (LHO). In the following,
we will see how the above more complicated problem can
be reduced to solving a set of N independent LHOs, by
an appropriate coordinate transformation.

III. EIGENVALUE ANALYSIS

We first note that, very generally, the matrix M is a
real symmetric matrix (this is true even if the masses of
different particles or different spring constants are no the
same; note that the symmetry of the matrix follows from
the 3rd Law of Newton: the action-reaction law). Rig-
orous results from linear algebra then tell us that there
exist exactly N linearly independent ortho-normal (i.e.
x̂i · x̂j = δij) eigenvectors xi that satisfy the following
equation

Mêi = λiêi,

where the N eigenvalues λi (i = 1, ..., N) are real num-
bers.

Let us now assume that the initial condition is such
that u(t = 0) = uoiêi, i.e. the initial direction is paral-
lel to one (any) of the eigenvectors. Then the direction
remains the same with time, and we can write

u(t) = vi(t)êi,

where x(t = 0) = uo, and x(t) satisfies the LHO equation

m
d2

dt2
vi(t) = −λivi(t).

As we know from the well-known LHO solution vi(t) =
Re[vo

i e−iωt], where the complex amplitude vo
i determine

both the (scalar) amplitude and the phase of the oscil-
lations, both of which are determined from the initial
displacement and the initial velocity, etc. Plugging this
in the above equation, we find the (eigen)frequency of
oscillations for this mode

ωi = (λi/m)1/2.

If the initial condition vector is not along on of the
eigenvectors, then it can always be written as a linear
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superposition of the eigenvectors

u(t = 0) =
N∑

i=1

uoiêi,

and similarly for the initial velocities. Then the full so-
lution takes the form of the superposition of modes

u(t) =
N∑

i=1

vi(t)êi,

where the N complex amplitudes are uniquely deter-
mined from the initial position and velocities of all par-
ticles.

IV. STRATEGIES FOR EIGENVALUE
ANALYSIS

This solution is very generally valid for an arbitrary set
of N particles interacting through elastic springs. The
precise form of the solution depends on the form of these
eigenmodes, i.e. the values for the eigenvalues and the
form of the eigenvectors. Our main task will, therefore,
be to solve the eigenvalue problem for a given system of
particles (model). This can be accomplished by a variety
of methods, numerical or analytical. When specific sym-
metries are present (e.g. translational symmetry as in a
crystal), then the eigenvalue analysis can be done in close
form. Most generally, it is sufficient to guess the form of
the eigenvectors, plug them in the eigenvalue equation
and see if the guess works. if it does, we immediately
also get the corresponding eigenvalues.

The important question is, however, how do we know
if we have found all the desired solutions? The answer is
provided by theorems of linear algebra, which tell us that
any real and symmetric matrix of dimension N has ex-
actly N ortho-normal (this linearly independent) eigen-
vectors. If we can find them by guess, and verify that
they satisfy these conditions, then we have rigorously
solved the problem. This is precisely the strategy one
uses in a periodic case, for example. One guesses that
the eigenvectors take the form of plane waves, and then
check if the guess “works”. The rest of the analysis is
easy, as we will see shortly.

V. TWO-ATOM MOLECULE IN A HARMONIC
TRAP

We will consider a two atom molecule bound by a
string of constant K. In addition, imagine that this
molecule is confined to a quasi-one dimensional parabolic
potential well, so that we pay energy even to move the
entire molecule left or right. This system can be rep-
resented by introducing additional boundary conditions,
such that each of the atoms is also attached by an ad-
ditional spring to a nearby “wall”, with corresponding

spring constant Q. The equations of motion then assume
the form

m
d2

dt2
u1(t) = −Qu1(t)−Ku1(t) + Ku2(t),

m
d2

dt2
u2(t) = −Ku2(t) + Ku1(t)−Qu2(t).

The corresponding interaction matrix assumes the form

M =
[

Q + K −K
−K Q + K

]
.

A. Diagonalization by a guess

Let us first try the following eigenvectors

ê1 =
1√
2

[
1
1

]
, ê2 =

1√
2

[
1
−1

]
.

We then get

Mê1 =
1√
2

[
Q + K −K
−K Q + K

] [
1
1

]

=
1√
2

[
Q
Q

]
= Qê1,

and

Mê2 =
1√
2

[
Q + K −K
−K Q + K

] [
1
−1

]

=
1√
2

[
Q + 2K
−Q− 2K

]
= (Q + 2K)ê.

We conclude that these are indeed eigenvectors, and the
corresponding eigenvalues are

λ1 = Q, λ1 = Q + 2K

Using the above formulas, we immediately find the os-
cillation frequencies of the two modes

ω1 = [Q/m]1/2
, ω1 = [(Q + 2K)/m]1/2

.

One frequency is lower, corresponding to the “acoustic”
mode, where u1(t) = u2(t), meaning that the molecule
moves as whole! Note that if we eliminate the harmonic
trap confining the molecule, then ω1 → 0, correspond-
ing to inertial (free) motion of the molecule. The other
mode has atoms moving “out of phase” u1(t) = −u2(t),
corresponding to internal vibrations of the molecule. The
corresponding frequency ω1 → [2K/m]1/2 remain finite
even for Q → 0, since then the motion corresponds to
a simple LHO. Note the factor of 2 in this expression.
This reflects the fact that for such a molecule, we need
to introduce a center-of-mass and relative coordinate; the
equation describing the relative coordinate corresponds
to a standard LHO, but with a reduced mass

mr =
m1m2

m1 + m2
=

m

2
,

in our case where m1 = m2.
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VI. FORMAL DIAGONALIZATION

We can also solve the characteristic equation

det |M− λI| = 0,

or
∣∣∣∣
Q + K − λ −K

−K Q + K − λ

∣∣∣∣ = 0,

giving

(Q + K − λ)2 = K2,

or

Q + K − λ = ±K,

i.e.

λ1/2 =
{

Q
Q + 2K

,

just as we found before. We can no also find the eigen-
vectors from

Mx̂1/2 = λ1/2x̂1/2,

giving

(Q + K − λ1/2)u1 = Ku2,

and we recover the above results for x̂1 and x̂2 (note that
they should also be normalized).

VII. PERIODIC ONE DIMENSIONAL SOLID

We can now use our “good guess” strategy, inspired by
periodicity. We guess that the eigenvectors have a form
of plane waves

un = Ce−ikna,

where a is the lattice spacing, and k labels different
wavevectors. We will later determine precisely the al-
lowed values for k. We plug this guess in the equation of
motion

−mω2un = −K(2un − un−1 − un+1),

or

mω2Ce−kna = K(2Ce−ikna−Ce−ik(n+1)a−Ce−ik(n−1)a).

Cancelling the factors -Ce−kna, we get

mω2 = K(2− Ce−ika − Ceika)
= 2K(1− cos(ka)),

or

ω = 2

√
K

m
sin(ka).

VIII. BOUNDARY CONDITIONS

Note now that the plane wave solution un(k) =
Ce−ikna, is meaningful only for values of |k| < π/a, since

un(k + 2π/a) = Ce−ikna−2πni = Ce−ikna = un(k).

In other words, we find periodicity in k-space with period
2π/a, and have to restrict the “physical solution” to the
“first Brilloiun zone” k ∈ (−π/a, π/a).

Furthermore, consider a finite system, so that

un = un+N .

The above plane wave form of our solution then gives

Ce−ikna = Ce−ik(n+N)a,

or

1 = e−ikNa.

From this equation we conclude that the only allowed
solution for the wavevector k are given by

k =
2π

Na
m,

where m is an integer in the range |m| < N/2, so k
is restricted to the first Brilloiun zone. As we can see,
we get “quantization” of sound modes - a phenomenon
which lies behind all musical instruments and their “har-
monics”. In the thermodynamic limit N →∞, we get a
continuum of sound modes.


