8. Superconductivity
8.1 Basic phenomenon

- Discovery of superconductivity
by H.K. Onnes (1911):

Resistance of Hg abruptly drops

to zero below ~4.2K. ;
Critical temperature (T,). %
o

" residual

0"

0

- Persistent current in a superconducting loop:
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An induced current in a superconducting loop circulates forever.



- Occurrence of superconductivity

a) Conventional superconductivity:
metals (T < 10K), alloys and
compounds (T < 40K) , organic
materials (T < 40K) ;

b) High-T, superconductivity:
Copper perovskites (cuprates) (T <
140K)
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8.2 Effect of Magnetic Field
- Critical Field

A strong enough magnetic field (H > Hc) destroys
superconductivity even below Tc.
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Fig. 8.46: The critical field vs temperaturein Type | superconductor& Q- 8-47: Thecritical field vs temperature in three examples of
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- Meissner Effect

A superconductor expels magnetic flux completely - perfect
diamagnetism.
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Magnetic Levitation:
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Superconductor above Tg

Magnet

Surface currents Superconductor below T

Future of transportation?



- Type Il Superconductors

In a class of superconductors, the transition from the Meissner
state to normal state is not abrupt. The transition goes through an
Intermediate (mixed) state where superconducting regions and
normal regions coexist.
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- For mH < B,,, Meissner state;
B., > mH > B,,, mixed state;
mH > B,, normal state.

cl

In the mixed state, the normal regions are in the form of small
cylinders (filaments) that penetrate the sample. Each filament is a
vortex (fluxoid) of flux lines.

Magnetic field lines

- Magnetic field penetrate 4 4

the superconductor in the Normal state

form _of a regular array of __ Superconducting state
Flux lines.

R Vortex of flux lines

i N (T

circulates around the wall
of each vortex.

Fig. 8.49: The mixed or vortex statein a Type |
superconductor.
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Images of vortex lattice
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Phase diagram of a type 11 superconductor:
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Fig. 8.50: Temperature dependence of B.; and Be,.
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8.3 Thermodynamics of superconductors

- Condensation Energy
Below T, the superconducting state should be a lower energy state
than the normal state. Energy difference in zero field:

DE=E,- Es:%m)Hc? | >

- Gibbs Energy
Superconducting state:

Go(H) =Gs(0)+ - mH

Normal state:

Gy =Gs(0) + MHA

I 1 1 ! ! I 1 I 1 L I I
0 0.5 10 L5

Temperature, K



- Specific Heat o
i
i) Discontinuity at T, S 0.0
— dHc 2 %D‘m
Ch- Cs= '{m)TVm( ) }T:TC )
dr 0.01
=» Second order phase transition

1) Exponential T-dependence

. = ag P(Te/M)

=> Energy gap at E;!
E,=2D (~KT)
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- Two fluid model:
: : H. n
Conduction electrons in a §
superconductor can be divided
into two classes: superelectrons 1.0
and normal electrons. ’

Concentration of superelectrons: T

ng = n{1- (T1>4]

The superelectrons do not suffer any scatterings and have zero
resistance, and short-circuit the normal electrons.

What's the difference between superelectrons and normal electrons???



8.4 Electrodynamics of Superconductors

1) Electric Field inside a superconductor is zero
E=0

1) London Equation:
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| - London penetration depth

Magnetic field does penetrate into a superconductor, but only to a
small depth near the surface!
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1) T-dependence of |

| =1 (0)(1- Ij)'l’z

The field penetrate the entire MO)
sample at T, (of course!).

Iv) Spatial distribution of supercurrent

J2(X) =-(
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The electric current flow in a superconductor is restricted to a
surface layer of the depth of London penetration depth.



Field and current penetration:
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v) Concept of coherence length

The superconducting coherence, z, represents the extent of the

superelectron wave function. Superconductivity cannot vary greatly
over this distance.
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vii) Flux Quantization

The magnetic flux threading a superconducting ring is quantized:
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8.5 Origin of Superconductivity: BCS Theory

1) Cooper pairs

- The superelectrons form pairs;

- Each pair consists of two electrons of opposite momentum and
spin (k-,-k™);

- Each electron in a pair has a lower energy (by amount of the
energy gap D) than a normal electron =» condensation energy;

DE ~ g(0)D°

- An energy of 2D is required to break up a Cooper pair;
- The Cooper pairs do not suffer any scattering and have zero
resistance.

Where does the attraction come from???



1) Attraction through electron-phonon interaction

One electron interacts with the lattice, distorts the lattice and
creates a local positive net charge, which attracts a second electron

nearby.
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Iil) Large V' means higher T, but also higher resistivity in the normal
state. = bad metals make good superconductors!

Iv) Since Wp H M2 higher T, for lighter masses - isotope
effect.

v) Temperature dependence of the energy gap

1.1

I .

0.9 | - \_%NP

0.7 = Bos aure \& s | @ — tanh[TCD(T)]
NEEES Do Do

_ - ou
0.5
A"
04— | %

0.3

|
02—

EEEEEEEEEE
, | | i

0 0.1 02 03 04 05 06 07 05 09 LO
TIT,




8.6 Superconducting Junctions

1) superconductor/normal metal (S/N): Andreev Reflection
How do electrons in N get into S?
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By pairing up with an electron of opposite momentum and spin, thus

forming a Cooper pair and get into S. A hole has to be reflected back
iIn N (why?). = Andreev reflection



1) S/Insulator/N (SIN): (single) electron tunneling

Fabrication of a tunnel junction: an example




1-V and conductance spectrum:
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SIN electron tunneling is a very i Ll
precise way of measuring the
energy gap and DOS of a
superconductor. Conversely, it is
often used to determine the 14 4
DOS of non-superconducting

materials, in which the S is there

to evidence tunneling.

o

NJE)




-T>0
G, +¥ E

=DM e

dig, + E df(E-eV)
Ty =G dE

[f(E-eV)- f(E)]dE

Exeitations

Nll'.E}
el

.ﬁ% ——
o+ o Excitations Ny(E)
A

Increasing
temperature

- small current and conductance below gap;
- sharp current rise at D (gap edge).



1) S1S: (single) electron tunneling
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- Current maximum at D,- D, =» negative resistance;
- Sharp current rise (gap edge) at D,+D..



Iv) S/(1, N)/S’ junctions: Josephson Effect (Cooper pair tunneling)

A supercurrent (current without voltage) flows across the insulator
without any dissipation because of tunneling of Cooper pairs.

Superconducting pair wave function:
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Modulation of Josephson current by magnetic field:

The Josephson current depends on the phase difference between
the two superconductors, which is modulation by a magnetic field
passing through the junction area = Fraunhofer pattern.
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V) Macroscopic quantum interference: SQUID
(Superconducting QUantum Interference Device)
A loop containing two Josephson junctions, and the total critical

current through the loop is modulated by the magnetic flux thread
the loop. A
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8.7 Superconducting Magnets
High critical field and critical current required.
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