Superconductivity

1. Basic phenomenon

- Discovery of superconductivity
by H.K. Onnes (1911):

Resistance of Hg abruptly drops
to zero below ~4.2K.
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- Persistent current in a superconducting loop:
An induced current in a superconducting loop circulates forever.
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- Occurrence of superconductivity

a) Conventional superconductivity:
metals (T 10K), alloys and
compounds (T < 40K) , organic
materials (T« 40K) ;

b) High-T. superconductivity:
Copper perovskites (cuprates) (T <
140K)
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2. Effect of Magnetic Field
- Critical Field

A strong enough magnetic field (H > Hc) destroys
superconductivity even below Tc.

H(T) = He(O)[1- <T1>2]
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Fig. 8.46: The critical field vs temperature in Type | superconductor&19- 8-47: The critical field vs temperature in three examples of
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- Meissner Effect

A superconductor expels magnetic flux completely - perfect
diamagnetism.
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Magnetic Levitation:
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Surface currents Superconductor below Te
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Type IT superconductor:
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Fig. 8.50: Temperature dependence of B.; and Be,.
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- For uoH < B4, Meissner state;
B., > uoH > B4, mixed state;
uoH > B.,, hormal state.

In the mixed state, the normal regions are in the form of small
cylinders (filaments) that penetrate the sample. Each filament is a
vortex (fluxoid) of flux lines.

Magnetic field lines
- Magnetic field penetrate
the superconductor in the Normal state
form of a regular array of
flux lines.
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Fig. 8.49: The mixed or vortex stateina Typell
superconductor.



Images of vortex lattice
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3. Specific Heat 0.04
Y

i) Discontinuity at T, S 003
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=> Second order phase transition K

ii) Exponential T-dependence
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- Two fluid model:

. . H. n
Conduction electrons in a 8
superconductor can be divided
into two classes: superelectrons 1.0
and normal electrons. ’

Concentration of superelectrons: -

ng = n{1- (T1>4]

The superelectrons do not suffer any scatterings and have zero
resistance, and short-circuit the normal electrons.

What's the difference between superelectrons and normal electrons???



4. Electrodynamics of Superconductors

i) Electric Field inside a superconductor is zero
E=0

ii) London Equation:
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A: London penetration depth

Magnetic field does penetrate into a superconductor, but only to a
small depth near the surfacel!
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iii) T-dependence of A
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iv) Spatial distribution of supercurrent
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The electric current flow in a superconductor is restricted to a
surface layer of the depth of London penetration depth.



Field and current penetration:
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v) Concept of coherence length

The superconducting coherence, {, represents the extent of the
superelectron wave function. Superconductivity cannot vary greatly
over this distance.
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vi) Detailed picture of flux lattice

Each vortex has a normal core of
diameter  and a circulating
supercurrent around the normal
core of depth A.




vii) Flux Quantization

The magnetic flux threading a superconducting ring is quantized:
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8.5 Origin of Superconductivity: BCS Theory

i) Cooper pairs

- The superelectrons form pairs;

- Each pair consists of two electrons of opposite momentum and
spin (k Tk )

- Each electron in a pair has a lower energy (by amount of the
energy gap A) than a normal electron = condensation energy:

AE ~ g(0)A?

- Anenergy of 2A is required to break up a Cooper pair;
- The Cooper pairs do not suffer any scattering and have zero
resistance.

Where does the attraction come from???



ii) Attraction through electron-phonon interaction

One electron interacts with the lattice, distorts the lattice and
creates a local positive net charge, which attracts a second electron

hearby.
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Consequences of BCS theory: _ JL

i) Electronic DOS of a superconductor: /%Iﬂ-—
E / |
(E) = 5y (E) n

Normal
electrons " —mremn

ii) 0y: Debye temperature
®p: Debye frequency
V. strength of electron-phonon interaction
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iii) Large V' means higher T,, but also higher resistivity in the normal
state. = bad metals make good superconductors!
iv) Since @p <M

higher T, for lighter masses - isotope
effect.

v) Temperature dependence of the energy gap
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8.6 Superconducting Junctions

i) superconductor/normal metal (S/N): Andreev Reflection
How do electrons in N get into S?
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By pairing up with an electron of opposite momentum and spin, thus
forming a Cooper pair and get into S. A hole has to be reflected back
in N (why?). = Andreev reflection



v) Macroscopic quantum interference: SQUID

(Superconducting QUantum Interference Device)
A loop containing two Josephson junctions, and the total critical
current through the loop is modulated by the magnetic flux thread

the loop.
2P _/\/\/\A/VW\/VWW\/\AM

I+ =1Sng +1 Zsm(qﬁl—?)

P= B
I ©
%‘ P [ T I R R T R R A IR A
=500 —400 =300 -200 —100 0 100 200 300 400 500

E- - ——— “""“‘“"“‘i Magnetic field (milligauss)

! I

| | :

b 1 A +

=2

Most sensitive detector of magnetic flux and magnetic field.



