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Double-layer Quantum Hall Ferromagnets 

Introduction 

The discovery of quantum Hall effect (QHE) was one of the most remarkable achievements in condensed 

matter physics in the second half of the last century. Together with superconductivity, QHE has 

extended our knowledge of quantum mechanics in many-body systems. In this effect, a 2D electron gas 

when subjected to a strong magnetic field exhibits a quantized Hall resistance and, at the same time, a 

nearly vanishing dissipative resistance in a range of magnetic field strength. The quantized Hall 

resistance can be characterized by integer quantum numbers in the integer quantum Hall effect (IQHE) 

or by some rational fractions in fractional quantum Hall effect (FQHE). In the IQHE regime, electrons 

occupy only the first few Landau levels because of the enormous degeneracy of these levels at high 

magnetic field. In the FQHE, the underlying physics is the Coulomb interaction and the correlation 

among electrons. It turns out that Coulomb interaction plays an important role not only in FQHE but also 

in QHE when we consider the spin dynamics of the system. In free space, the Zeeman splitting is exactly 

the same as the cyclotron splitting which is of the order of 100 K. But in real material, such as GaAs, the 

Zeeman splitting is reduced by about 2 orders of magnitude compared to the cyclotron splitting due to 

the reduction in effective mass and the gyromagnetic ratio of electrons. Therefore, at low temperature, 

the system lies in a special situation in which the orbital motion is fully quantized (𝑘𝑘𝐵𝐵𝑇𝑇 ≪ ħ𝜔𝜔𝑐𝑐 ) but the 

low-energy spin fluctuations are not forbidden (𝑘𝑘𝐵𝐵𝑇𝑇~𝑔𝑔∗𝜇𝜇𝐵𝐵𝐵𝐵). Interestingly, in the ground state of 

quantum Hall system, all the spins are still aligned ferromagnetically not due to the Zeeman splitting but 

due to the Coulomb interaction. Coulomb interaction is independent of spin therefore we can expect 

the same effect in double-layer quantum Hall system with the layer indices play the role of spin. 

In this report, we start out with an introduction to quantum Hall effect and quantum Hall ferromagnet. 

We then discuss two quantum many-body effects in double-layer quantum Hall ferromagnet by using 

pseudo spin treatment in which the layer indices play the role of spin. The first one is the interlayer 

phase coherent effect which associated with the interaction between electrons in different layers. The 

second one is the tunneling between the two layers and the effect of the in plane component of the 

magnetic field, which is related to the broken U(1) symmetry of the system.  

Quantum Hall Effect 

The advance in technology makes it possible to prepare 2D electron gas system with extremely low 

disorder and high mobility. The motion of an electron in such system in the presence of a uniform 

magnetic field perpendicular to the plane can be studied conveniently by choosing the Landau gauge for 

the vector potential 𝐴𝐴(𝑟𝑟)= 𝑥𝑥𝑥𝑥ŷ. Using this gauge, the physics of the system is invariant under the 

translation in 𝑦𝑦 axis. The wave function for the motion in this axis is therefore simply plane wave 

characterized by the wave vector 𝑘𝑘. By separating variables one can see that the wave function for the 



motion in 𝑥𝑥 axis is the same as that of a harmonic oscillator whose frequency equals to the cyclotron 

frequency and whose motion centers at 𝑋𝑋𝑘𝑘 = −𝑘𝑘𝑙𝑙2 where 𝑙𝑙 = �ħ𝑐𝑐 𝑒𝑒𝑒𝑒⁄  is the magnetic length. The 

energy levels corresponding to the motion in 𝑥𝑥 axis are quantized as 𝜖𝜖𝑘𝑘 ,𝑛𝑛 = (𝑛𝑛 + 1
2
)ħ𝜔𝜔𝑐𝑐  and called 

Landau levels. Landau levels are degenerate because they do not depend on the wave vector 𝑘𝑘. The 

numbers of states in each Landaus levels can be calculated by imposing the periodic boundary condition 

in 𝑦𝑦 axis. Let’s consider a rectangular sample with dimensions 𝐿𝐿𝑥𝑥 , 𝐿𝐿𝑦𝑦  and the left edge is at 𝑥𝑥 = −𝐿𝐿𝑥𝑥  and 

the right edge is at 𝑥𝑥 = 0, then the condition for the centers of motion to be inside the sample 

−𝐿𝐿𝑥𝑥 < 𝑋𝑋𝑐𝑐 < 0 gives 0 < 𝑘𝑘 < 𝐿𝐿𝑥𝑥 𝑙𝑙2⁄ . The total number of states in each Landau levels is then: 

𝑁𝑁 =
𝐿𝐿𝑦𝑦
2𝜋𝜋

� 𝑑𝑑𝑑𝑑 =
𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦
2𝜋𝜋𝜋𝜋2

𝐿𝐿𝑥𝑥 𝑙𝑙2⁄

0

= 𝑁𝑁𝜙𝜙  

where 𝑁𝑁𝜙𝜙 = 𝐵𝐵𝐿𝐿𝑥𝑥𝐿𝐿𝑦𝑦 𝜙𝜙0⁄  is the number of flux quanta penetrating the sample; 𝜙𝜙0 = ℎ𝑐𝑐 𝑒𝑒⁄  is the 

quantum of magnetic flux. So there is exactly one state per Landau level per flux quantum. 

In general, applying an electric field along the 𝑥𝑥 axis will result in a shift in the centers of the motions 𝑋𝑋𝑘𝑘  

and a 𝑘𝑘-dependence in Landau levels. If the electric field is non-uniform and there are disorders in the 

system, all the states in the bulk are localized due to Anderson’s localization. In the other words, deep 

inside the sample, the Landau levels are still 𝑘𝑘-independent, the group velocity is therefore equal to 

zero. But at the edges 𝑥𝑥 = −𝐿𝐿𝑥𝑥  and 𝑥𝑥 = 0 of the sample Landau levels does depend on 𝑘𝑘, furthermore, 

the group velocity 

𝑣⃗𝑣𝑘𝑘 =
1
ħ
𝜕𝜕𝜖𝜖𝑘𝑘
𝜕𝜕𝜕𝜕

ŷ 

has the opposite sign on the two edges of the sample. Therefore, there are edge currents running in 

opposite directions along the 𝑦𝑦 axis. The electric transport in the system can be analyzed in analogy with 

the Landauer formalism for the transport in narrow wide. The edge currents correspond to the left and 

the right moving states between two Fermi points. The net current can be calculated by adding up the 

group velocities of all the occupied states: 

𝐼𝐼 = −
𝑒𝑒
𝐿𝐿𝑦𝑦
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where we assume that in the bulk only a single Landau level is occupied and 𝑛𝑛𝑘𝑘  is the occupied 

probability. At zero temperature, we have 

𝐼𝐼 = −
𝑒𝑒
ℎ
� 𝑑𝑑𝑑𝑑
𝜇𝜇𝐿𝐿

𝜇𝜇𝑅𝑅
= −

𝑒𝑒
ℎ

[𝜇𝜇𝐿𝐿 − 𝜇𝜇𝑅𝑅] 

The definition of the Hall voltage drop is 

(+𝑒𝑒)𝑉𝑉𝐻𝐻 ≡ (+𝑒𝑒)[𝑉𝑉𝑅𝑅 − 𝑉𝑉𝐿𝐿] = [𝜇𝜇𝑅𝑅 − 𝜇𝜇𝐿𝐿] 

Hence 

𝐼𝐼 = −
𝑒𝑒2

ℎ
𝑉𝑉𝐻𝐻  



If there are 𝜈𝜈 Landau levels are occupied in the bulk, then 

𝐼𝐼 = −𝜈𝜈
𝑒𝑒2

ℎ
𝑉𝑉𝐻𝐻  

Here, the applied voltage is in 𝑥𝑥 axis and the net current is along 𝑦𝑦 axis, therefore what we are 

calculating here is indeed the Hall resistance. So, we derive to what are observed in QHE 

𝜎𝜎𝑥𝑥𝑥𝑥 = 0 

𝜎𝜎𝑥𝑥𝑥𝑥 = −𝜈𝜈
𝑒𝑒2

ℎ
 

with the integer quantum number 𝜈𝜈 which is also known as Landau level filling factor. 

Quantum Hall Ferromagnets  

Even though FQHE is not necessary for the discussions in this report, it is worth to mention that in that 

class of QHE, the quantum number 𝜈𝜈 takes in some rational fraction 

(𝜈𝜈 = 1 3⁄ , 2 5⁄ , 3 7⁄ , 2 3⁄ , 3 5⁄ , 1 5⁄ , 2 9⁄ , 3 13, 5 2⁄ , 12 5, …⁄⁄ ). The underlying physics in FQHE is the 

Coulomb interaction and the correlation between electrons. One may think that such interaction has 

nothing to do with integer quantum Hall system. However, the study of ferromagnetism in the system 

with 𝜈𝜈 = 1 has shown that Coulomb interaction also plays an important role. In a fully ferromagnetic 

state, all the spins are lined up parallel to each other, hence the spin part of the wave function is 

symmetric under the particle exchanges. Therefore, the spatial part of the wave function must be fully 

antisymmetric and vanish when any pair of particles approaches each other. Such condition keeps the 

particles away from each other thus lowers the Coulomb interaction. It turns out that for filling factor 

𝜈𝜈 = 1, the Coulomb interaction is about 2 orders of magnitude greater than the Zeeman splitting and 

hence strongly stabilizes the ferromagnetic state. Indeed, at zero temperature, the ground state of the 

system with 𝜈𝜈 = 1 is spontaneously fully polarized even in the absence of an external magnetic field. 

The spin wave excitations can be studied by using the method similar to that used in Heisenberg model 

despite the fact that spins in Heisenberg model are localized whereas quantum Hall ferromagnet is a 

system of itinerant spins. The spin wave dispersion shows a gap at 𝑘𝑘 = 0 equal to the Zeeman splitting 

and starts out quadratically at small 𝑘𝑘. At large wave vectors, the energy saturates at the Coulomb 

interaction scale. Effective action theory can also be used to reproduce these results. In this theory, first 

we write down the Lagrangian of the system and then derive the equation of motion from that. The 

Lagrangian that realizes the correct precession of spin in magnetic field and also the global spin rotation 

(SU(2) symmetry)can be written as 

ℒ = −ħ𝑆𝑆𝑆𝑆�𝑑𝑑2𝑟𝑟{𝑚̇𝑚𝜇𝜇 (𝑟𝑟)𝐴𝐴𝜇𝜇 [𝑚𝑚��⃗ ] − ∆𝑚𝑚𝑧𝑧(𝑟𝑟)} −
1
2
𝜌𝜌𝑠𝑠 �𝑑𝑑2 𝑟𝑟𝜕𝜕𝜇𝜇𝑚𝑚𝜈𝜈𝜕𝜕𝜇𝜇𝑚𝑚𝜈𝜈 + �𝑑𝑑2 𝑟𝑟𝜆𝜆(𝑟𝑟)(𝑚𝑚𝜇𝜇𝑚𝑚𝜇𝜇 − 1) 

where 

𝑆𝑆 = 1 2⁄  is the spin length 

𝑛𝑛 = 𝜈𝜈 2𝜋𝜋𝑙𝑙2⁄  is the particle density 

𝑚̇𝑚𝜇𝜇 (𝑟𝑟) =
𝑑𝑑𝑚𝑚𝜇𝜇 (𝑟𝑟)
𝑑𝑑𝑑𝑑

 



𝑚𝑚��⃗  is a vector field of fixed length 𝑚𝑚��⃗ ∙ 𝑚𝑚��⃗ = 1 which describes the local orientation of the order 

parameter (the magnetization) 

𝐴𝐴 can be determined by requiring that it leads to the correct precession of the magnetization; 

∆��⃗ = ∆ẑ is the external magnetic field 

𝜌𝜌𝑠𝑠  is a phenomenological spin stiffness 

𝜆𝜆 is the Lagrange multiplier to impose the fixed length constraint. 

… 

Double-layer Quantum Hall Ferromagnet 

Double-layer quantum Hall ferromagnet consists of two layers of 2D electron gas. Although the layer 

separation is comparable to the distance between electrons in the same layer, the interlayer electrons 

interaction is still smaller than the intralayer electrons interaction, therefore in this case the system 

does not have a full SU(2) symmetry. The Lagrangian is now written as 

ℒ = −ħ𝑆𝑆𝑆𝑆�𝑑𝑑2𝑟𝑟 {𝑚̇𝑚𝜇𝜇 (𝑟𝑟)𝐴𝐴𝜇𝜇 [𝑚𝑚��⃗ ] − ∆𝑚𝑚𝑧𝑧(𝑟𝑟)} −
1
2
𝜌𝜌𝑠𝑠 �𝑑𝑑2 𝑟𝑟 𝜕𝜕𝜇𝜇𝑚𝑚𝜈𝜈𝜕𝜕𝜇𝜇𝑚𝑚𝜈𝜈 + �𝑑𝑑2 𝑟𝑟 𝜆𝜆(𝑟𝑟)(𝑚𝑚𝜇𝜇𝑚𝑚𝜇𝜇 − 1)

−�𝑑𝑑2𝑟𝑟 𝛽𝛽𝑚𝑚𝑧𝑧𝑚𝑚𝑧𝑧 + �𝑑𝑑2𝑟𝑟 𝑛𝑛𝑛𝑛𝑚𝑚𝑧𝑧  

Broken SU(2) symmetry; XY model 

Linear instead of quadratic dispersion due to the 𝛽𝛽 term 

… 

Interlayer Phase Coherent 

Interaction 
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Interlayer Tunneling and Tilted Field Effects 

Broken U(1) symmetry 
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