Superconductivity – from physics to power grid

The Discovery of Superconductivity H. Kammerlingh Onnes, 1911, Lieden

What causes superconductivity?

- BCS Theory (Illinois, 1957) Bardeen, Cooper and Schrieffer
- Electrons become coherent by pairing up into "Cooper Pairs"

The underlying lattice acts as the "glue" for pairing electrons Strength of this glue is the **"Energy Gap"**

Soft Mattress Analogy

Cooper Pairs are Correlated Electrons: Transport electricity without Resistance Tallahassee Analogy is: Wide-wheel-base car with independent suspension on a Very bumpy road

A single wheel will be scattered from the road. Truck with "correlated wheels" travels smoothly

The energy gap: Broken phase symmetry lowers electron energy

Bi-2223 filaments in silver

The preferred conductor form is as many superconducting filaments embedded in ~1 mm diameter wire which has a good normal (i.e. not superconducting) conductor in parallel – silver must be used with the Bi cuprates because oxygen needs to pass through the matrix to get best properties in the Bi-HTS

MgB₂ filaments in Cu

Low Temperature Superconductors

TABLE 21.7 Critical Temperatures and Magnetic Fluxesfor Selected Superconducting Materials

Material	Critical Temperature T _C (K)	Critical Magnetic Flux Density B_C (tesla) ^a	
	Elements		
Aluminum	1.18	0.0105	
Lead	7.19	0.0803	
Mercury (α)	4.15	0.0411	D
Tin	3.72	0.0305	B _c
Titanium	0.40	0.0056	
Tungsten	0.02	0.0001	
	Compounds and A	lloys	
Nb–Ti alloy	10.2	12	
Nb–Zr alloy	10.8	11	
Nb ₃ Sn	18.3	22	R
Nb ₃ Al	18.9	32	
Nb ₃ Ge	23.0	30	
V ₃ Ga	16.5	22	
PbMo ₆ S ₈	14.0	45	

High-Temperature Superconductivity Bednorz and Müller, 1986, Zürich

The National High Magnetic Field Laboratory - FSU

Energy Gap of a Superconductor: Conventional, unconventional and mixed states:

2008 - New Iron Age! Iron-based HTS !!!

Today's "Tc vs. Time" with NEW HTS The First HTS are NOT UNIQUE!!!

The A

Applications

The NHMFL 900-MHz Ultra-Wide Bore (2004)

We can make fields up to ~2/3 of the transition line

State of the art Nb₃Sn 900 MHz NMR magnet, operating in persistent mode at 21T, 950 MHz

Superconductivity at 500 km/hr

Japanese railways MagLev train First LTS, now HTS - wire-wound magnets, not bulk lumps!

15 35

- Yamanashi Test Site, Japan
- 33 km long, >500 Km/hr
- Segment of Tokyo-Osaka new line

MRI Magnets

Closed (1-3 Tesla) and open (0.3T) MRI magnets both use Nb-Ti with a transition temperature (Tc) of only 9K, ~-450F.

Cooled only by liquid helium until late 2006 - new MgB₂ MRI machine can now operate without liquid on a refigerator

Nb₃Sn could make Proton Therapy cancer treatment affordable

Problem:

- One room plus equipment: >\$50 million
- Four rooms plus equipment: >\$100 million
- Big problem to manage project,

Solution: High-field weak focusing cyclotron

- Superconducting magnets reduce size of accelerator
- Allows retrofit into existing space
- Cost less than \$15M

Controlled Thermonuclear Fusion requires intense fields to "bottle" the plasma

The world's most powerful pulsed superconducting magnet: ITER CS Model Coil.

150 tons

13 T

(approximately 260 thousand times more powerful than the earth's magnetic field).

The magnet consists of two modules, the inner module fabricated in the US and the outer fabricated in Japan. The two coils were combined at the Naka Fusion Research Establishment test facility of the Japan Atomic Energy Research Institute, JAERI.

Photo courtesy of and copyright retained by JAERI.

The Cable-in-Conduit, 60kA conductor

Strand

x 5 + core) x 6

CICC

Subelement

Nb₃Sn

Filament

Montage by Peter Lee ASC

International Thermonuclear **Experimental Reactor (ITER)**

"Not de irrespon outcome for human that it was essentially In a fusion read

NEW

With its big political hurdle behind it. With its big political initiale bening it. the make-or-break project must run a ganitel of the make-or-break project must run a genuer of rechnical challenges to see Wiether rusion can technical challenges to see whether fusion fulfill is promise el almost fimitless energy ITER's \$12 Billion

Gamble

NEWSFOCUS

EDITO

O OPIN

nuclei - the hyd fused together to

source, it is necessa exceeding 100 million

steadily for year

Largest US Accelerator: Fermilab – 1987 till now

Superconducting Tevatron energysaver accelerator rings west of Chicago (Batavia, IL)

Nb-Ti at 4.5 T, 4.2 K

Large Hadron Collider-CERN

Mont Blanc

1232 SC Dipoles

1500 tonnes of SC cables

3286 HTS Leads

Anna in the second of the second

Lake Geneva

Switzerland

Large Hadron Collider

- There

15000 MJ of magnetic energy

27 km Tunnel

France

Large HTS Motor

37MW HTS (Bi-2223) superconducting rotor for Navy ship - ready for test 2007

The Power Grid: Triumph of 20th Century Engineering

Clean, versatile

power everywhere ... at the flick of a switch !

The Energy ChallengeFor production,• 2050 demand will Doubledelivery and use• 2100 demand will Triple

The Applied Superconduction story ter VVVVV.CIA.UOC.SOV/OIAI/IEO/IIIUEX.IIUIII

The 21st Century: New Challenges

Reliability power quality **Power loss/customer** US 214 min/yr France 53 Japan 6 Sustained Interruptions 33% \$26.3 B

\$79 B economic loss (US) efficiency lost energy

In US •62% energy lost in production/delivery •8-10% lost in grid

•2006: 40 GW lost •2030: 60 GW lost

First Working Prototype, DoE Bixby substation, AEP, Columbus OH 13.8 kV, 2400 A 200 m cable system by Ultera (Southwire/nktcables)

In-grid operation since July 2006

Flexible high-temperature superconducting wire can now be made in large reel-to-reel systems.

Dense urban areas (NYC here) SC cables carry 5-times the current of copper of same diameter.

Large HTS Power cable

Second Generation (2G) HTS Cables (as used in Albany and Columbus)

- Silver based (too expensive)
- Complicated multilayer technology (more expensive)
- Only 2% of cable is superconducting (no power density advantage)
- HTS materials are very anisotropic and brittle (low reliability)
- Still need lots of cooling (only a little expense and challenge)

History - Policy notes

 1987 (HTS just discovered): A president promises significant research funding increases.

- **2006**: Another president promises to double funding.

