Solution: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 10: Line 10:
<math>\Delta r\cdot\Delta p\backsimeq\hbar</math>
<math>\Delta r\cdot\Delta p\backsimeq\hbar</math>


Thus the momentum corresponding to <math>\Delta r</math> and the corresponding kinetic energy are usefully defined as:
Thus the momentum corresponding to <math>\Delta r</math> and the corresponding kinetic and potential energy are given by:


<math>p\backsimeq\Delta p\backsimeq\frac{\hbar}{\Delta r}</math>
<math>p\backsimeq\Delta p\backsimeq\frac{\hbar}{\Delta r}</math>


<math>KE=\frac{P^{2}}{2m}\backsimeq\frac{\hbar^{2}}{2m(\Delta r)^{2}}</math>
<math>KE=\frac{P^{2}}{2m}\backsimeq\frac{\hbar^{2}}{2m(\Delta r)^{2}}</math>
<math>V\backsimeq-\frac{e^{2}}{\Delta r}</math>
Giving the total energy:
<math>E\sim\frac{\hbar^{2}}{2m(\Delta r)^{2}}-\frac{e^{2}}{\Delta r}</math>
The minimum for <math>\triangle r</math> can be found by differentiating the total energy with respect to <math>\triangle r</math>.
<math>\frac{\partial E}{\triangle r}=0\backsim\frac{-\hbar^{2}}{m(\bigtriangleup r)^{3}}+\frac{e^{2}}{(\triangle r)^{2}}</math>
<math>\frac{\hbar^{2}}{m(\bigtriangleup r)^{3}}\thicksim\frac{e^{2}}{(\Delta r)^{2}}</math>
<math>\triangle r\thicksim\frac{\hbar^{2}}{me^{2}}</math>
This corresponds to the bohr radius: <math>r_{bohr}=k\frac{\hbar^{2}}{m_{e}e^{2}}</math>
<math>k=4\pi\varepsilon_{0}</math>

Revision as of 17:09, 22 January 2011

Solution

The Energy for the hydrogen atom is described by:


is defined as the average radius of localization for the electron. Appropriately, the uncertainty principle can be generalized as:

Thus the momentum corresponding to and the corresponding kinetic and potential energy are given by:

Giving the total energy:

The minimum for can be found by differentiating the total energy with respect to .

This corresponds to the bohr radius: