Feynman Path Integral Evaluation of the Propagator: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: The propagator for harmonic oscillator can be evaluated as follows: <math><x|\hat{U}(t,0)|x_0>=e^{\frac{i}{\hbar}S}\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2...)
 
No edit summary
Line 1: Line 1:
The propagator for harmonic oscillator can be evaluated as follows:  
The propagator for [[Harmonic oscillator spectrum and eigenstates|harmonic oscillator]] can be evaluated as follows:  


<math><x|\hat{U}(t,0)|x_0>=e^{\frac{i}{\hbar}S}\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}                                              </math>
<math><x|\hat{U}(t,0)|x_0>=e^{\frac{i}{\hbar}S}\int_{y(0)=0}^{y(t)=0}D[y(t')]e^{\frac{i}{\hbar}\int_{0}^{t}(\frac{1}{2}my'^2-\frac{1}{2}ky^2)dt'}                                              </math>


where <math>y(t')</math> is the deviation of possible trajectories about the classical trajectory.
where <math>y(t')</math> is the deviation of possible trajectories about the classical trajectory.

Revision as of 12:36, 6 July 2011

The propagator for harmonic oscillator can be evaluated as follows:

where is the deviation of possible trajectories about the classical trajectory.