Self-consistent Hartree-Fock approach to Phase Transitions: Difference between revisions
Jump to navigation
Jump to search
Line 3: | Line 3: | ||
==== Hartree-Fock in second quantized form ==== | ==== Hartree-Fock in second quantized form ==== | ||
<math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r^{\prime}}) \psi_{\sigma} </math> | <math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r^{\prime}}) \psi_{\sigma}^{\dag}(\vec{r}) \psi_{\sigma^{\prime}}^{\dag}(\vec{r^{\prime}}) \psi_{\sigma^{\prime}}(\vec{r^{\prime}}) \psi_{\sigma}(\vec{r}) </math> |
Revision as of 17:23, 30 November 2012
Hartree-Fock approach to Phase Transitions
Hartree-Fock in second quantized form
Failed to parse (unknown function "\dag"): {\displaystyle \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r^{\prime}}) \psi_{\sigma}^{\dag}(\vec{r}) \psi_{\sigma^{\prime}}^{\dag}(\vec{r^{\prime}}) \psi_{\sigma^{\prime}}(\vec{r^{\prime}}) \psi_{\sigma}(\vec{r}) }