Self-consistent Hartree-Fock approach to Phase Transitions: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 2: Line 2:


==== Hartree-Fock in second quantized form ====
==== Hartree-Fock in second quantized form ====
The interaction energy operator for a two body system with pairwise interactions is given by


<math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>
<math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>
In the above operator, it is important to note the order of the operators. Using
(19.58)
we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as
<math> H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \del \psi_{\sigma}^{\dagger}(\vec{r}) \dot \del \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>

Revision as of 17:37, 30 November 2012

Hartree-Fock approach to Phase Transitions

Hartree-Fock in second quantized form

The interaction energy operator for a two body system with pairwise interactions is given by

In the above operator, it is important to note the order of the operators. Using

(19.58)

we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as

Failed to parse (unknown function "\del"): {\displaystyle H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \del \psi_{\sigma}^{\dagger}(\vec{r}) \dot \del \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) }