Self-consistent Hartree-Fock approach to Phase Transitions: Difference between revisions
Jump to navigation
Jump to search
Line 13: | Line 13: | ||
we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as | we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as | ||
<math> H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \ | <math> H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \grad \psi_{\sigma}^{\dagger}(\vec{r}) \dot \grad \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math> |
Revision as of 17:37, 30 November 2012
Hartree-Fock approach to Phase Transitions
Hartree-Fock in second quantized form
The interaction energy operator for a two body system with pairwise interactions is given by
In the above operator, it is important to note the order of the operators. Using
(19.58)
we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as
Failed to parse (unknown function "\grad"): {\displaystyle H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \grad \psi_{\sigma}^{\dagger}(\vec{r}) \dot \grad \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) }