Self-consistent Hartree-Fock approach to Phase Transitions: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 7: Line 7:
<math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>
<math> \nu = \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>


In the above operator, it is important to note the order of the operators. Using
In the above operator, it is important to note the order of the operators. Including the kinetic energy term we can write the Hamiltonian for particles of mass m with pairwise interactions in second quantized formalism as
 
(19.58)
 
we can write the pairwise interaction Hamiltonian for particles of mass m in second quantized formalism as


<math> H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \nabla \psi_{\sigma}^{\dagger}(\vec{r}) \cdot \nabla \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>
<math> H = \sum_{\sigma \sigma^{\prime}} \int d^{3}r \frac{1}{2m} \nabla \psi_{\sigma}^{\dagger}(\vec{r}) \cdot \nabla \psi_{\sigma}(\vec{r}) + \frac{1}{2} \sum_{\sigma \sigma^{\prime}} \int d^{3}r d^{3}r^{\prime} v(\vec{r}-\vec{r}^{ \prime}) \psi_{\sigma}^{\dagger}(\vec{r}) \psi_{\sigma^{\prime}}^{\dagger}(\vec{r}^{ \prime}) \psi_{\sigma^{\prime}}(\vec{r}^{ \prime}) \psi_{\sigma}(\vec{r}) </math>

Revision as of 17:42, 30 November 2012

Hartree-Fock approach to Phase Transitions

Hartree-Fock in second quantized form

The interaction energy operator for a two body system with pairwise interactions is given by

In the above operator, it is important to note the order of the operators. Including the kinetic energy term we can write the Hamiltonian for particles of mass m with pairwise interactions in second quantized formalism as