Phy5670/HubbardModel 2DCalculations: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 1: Line 1:
=Hubbard Model: 2D Calculations=
=Hubbard Model: 2D Calculations=


Expansion of the Hubbard model Hamiltonian into two dimensions allows us to calculate various properties, including the grand canonical potential and corrections to the chemical potential. In 2D, the Hamiltonian can be written as:
Expansion of the Hubbard model Hamiltonian into two dimensions allows us to calculate various properties. In 2D, the Hamiltonian can be written as:


<math> H = -t \sum_{r=1}^{n_x} \sum_{s=1}^{n_y} \sum_{\sigma = \uparrow,\downarrow}   
<math> H = -t \sum_{r=1}^{n_x} \sum_{s=1}^{n_y} \sum_{\sigma = \uparrow,\downarrow}   

Revision as of 12:41, 5 December 2012

Hubbard Model: 2D Calculations

Expansion of the Hubbard model Hamiltonian into two dimensions allows us to calculate various properties. In 2D, the Hamiltonian can be written as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H = -t \sum_{r=1}^{n_x} \sum_{s=1}^{n_y} \sum_{\sigma = \uparrow,\downarrow} (c_{r,s,\sigma}^{\dagger} c_{r+1,s,\sigma} + c_{r,s,\sigma}^{\dagger} c_{r,s+1,\sigma} + h.c. ) + U \sum_{r=1}^{n_x} \sum_{s=1}^{n_y} c_{r,s,\uparrow}^{\dagger} c_{r,s,\downarrow}^{\dagger}c_{r,s,\downarrow}c_{r,s,\uparrow} }

The grand canonical potential, Omega, is best calculated by using coherent state path integral. The grand partition function is defined as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = Tr \big[e^{-\beta (H - \mu N)} \big] = e^{-\beta \Omega} }

which can be expanded as:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z = Z_{0} \big\langle e^{-S_{int}} \big\rangle = Z_{0} e^{-\langle S_{int} \rangle} e^{\frac{1}{2}( \langle S_{int}^2 \rangle - \langle S_{int} \rangle^2)} = e^{-\beta \Omega_0}e^{-\beta \Omega_1}e^{-\beta \Omega_2} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle S_{int} = \int_{0}^{\beta} d\tau H_{int} (\tau) }

which utilizes cumulant expansion. We begin to calculate the grand canonical potential by analyzing the contribution from Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_0 } :

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Z_{0} = \prod_k (1+e^{-\beta(E_k - \mu)})^2 = e^{2 \sum_k ln(1+e^{-\beta(E_k - \mu)})} = e^{-\beta \Omega_0} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_0 = -\frac{2}{\beta} \sum_k ln(1+e^{-\beta(E_k - \mu)}) }

Now we look at the contribution from the first order cumulant expansion. First we'll need to convert Hint to momentum space:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c_{r,s,\sigma} = \frac{1}{\sqrt{M}} \sum_{k_x,k_y} e^{i k_x \cdot r} e^{i k_y \cdot s} c_{k_x,k_y,\sigma} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{int} = U \sum_{r=1}^{n_x} \sum_{s=1}^{n_y} c_{r,s,\uparrow}^{\dagger} c_{r,s,\downarrow}^{\dagger}c_{r,s,\downarrow}c_{r,s,\uparrow} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{U}{M^2} \sum_{k_{x_1}...k_{x_4}} \sum_{k_{y_1}...k_{y_4}} e^{-ik_{x_1} r}e^{-ik_{x_2} r}e^{ik_{x_3} r}e^{ik_{x_4} r}e^{-ik_{y_1} s}e^{-ik_{y_2} s}e^{ik_{y_3} s}e^{ik_{y_4} s} c_{k_{x_1},k_{y_1},\uparrow}^{\dagger} c_{k_{x_2},k_{y_2},\downarrow}^{\dagger}c_{k_{x_3},k_{y_3},\downarrow}c_{k_{x_4},k_{y_4},\uparrow} }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \frac{U}{M} \sum_{k_{x_1}...k_{x_4}} \sum_{k_{y_1}...k_{y_4}} \delta_{k_{x_1}+k_{x_2},k_{x_3}+k_{x_4}} \delta_{k_{y_1}+k_{y_2},k_{y_3}+k_{y_4}} c_{k_{x_1},k_{y_1},\uparrow}^{\dagger} c_{k_{x_2},k_{y_2},\downarrow}^{\dagger}c_{k_{x_3},k_{y_3},\downarrow}c_{k_{x_4},k_{y_4},\uparrow} }

For simplicity, we will combine the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_x } and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_y } into a single index as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k } . Evaluating the Kronecker deltas yields:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{int} = \frac{U}{M} \sum_{k,k',q} c_{k,\uparrow}^{\dagger} c_{k',\downarrow}^{\dagger} c_{k'+q,\downarrow} c_{k-q,\uparrow} }

The only contraction combination possible, due to orthogonal spins, results in the following set of Green's functions:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle S_{int} \rangle = \bigg \langle \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k',q} c_{k,\uparrow}^{\dagger} c_{k',\downarrow}^{\dagger} c_{k'+q,\downarrow} c_{k-q,\uparrow} \bigg \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k'} \big \langle \mathcal{G}_{0}(k\tau,k\tau)\mathcal{G}_{0}(k'\tau,k'\tau) \big \rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \int_{0}^{\beta} d\tau \frac{U}{M} \sum_{k,k'} n_{F}(\epsilon_k) n_{F}(\epsilon_k') }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = {\beta} \frac{U}{M} \sum_{k,k'} n_{F}(\epsilon_k) n_{F}(\epsilon_k') = \beta \Omega_1 }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega_1 = \frac{U}{M} \sum_{k,k'} n_{F}^2(\epsilon_k) }

Combining both terms, the grand canonical potential to first order is:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Omega = \Omega_0 + \Omega_1 = -\frac{2}{\beta} \sum_k ln(1+e^{-\beta(E_k - \mu)}) + \frac{U}{M} \sum_{k} n_{F}^2(\epsilon_k) }