Phy5645/Heisenberg Uncertainty Relation 3: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let's say that a particle has wavefunction : <math>\Psi (x)=(\frac{\pi }{a})^{-1/4}e^{-ax^{2}/2}</math> | Let's say that a particle has wavefunction : <math>\Psi (x)=\left (\frac{\pi }{a}\right )^{-1/4}e^{-ax^{2}/2}</math> | ||
and we are trying to verify Heisenberg Uncertanity relation. | and we are trying to verify Heisenberg Uncertanity relation. | ||
In order to verify the uncertanity relation, we need to find | In order to verify the uncertanity relation, we need to find the uncertainties in position and momentum, | ||
<math>\Delta p=\sqrt{\left \langle {p^{2}} \right \rangle -\left \langle {p} \right \rangle ^{2}}</math> | |||
and | |||
<math>\Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.</math> | |||
Lets start by calculating the expectation values one by one. | |||
<math>\langle {x}\rangle =\left \langle {\Psi \left |{x} \right |\Psi } \right \rangle =\int\limits_{-\infty}^{\infty} {x\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 </math> | |||
since the integrand is odd and thus the integral over all space is zero. | |||
<math>\left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle </math> | <math>\left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle </math> | ||
<math>=\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}dx}=\sqrt {\frac{a}{\pi }} \ | <math>=\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}</math> | ||
Since the integral is of a Gaussian times a power of <math>x</math>, we are able to use the known results for such integrals. | |||
Similarly to <math>\left \langle {x} \right \rangle, </math> <math>\left \langle {p} \right \rangle =\left \langle {\Psi \left |{p} \right |\Psi } \right \rangle =0</math> because the integrand will be an odd function as well. | |||
<math>\left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle </math> | <math>\left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle </math> | ||
<math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} (\frac{\hbar }{i}\frac{\ | <math>=\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx</math> | ||
<math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\ | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \left \lbrace {-ae^{-ax^{2}/2}+\left ({-\frac{2ax}{2}} \right )\left ({-\frac{2ax}{2}} \right )e^{-ax^{2}/2}} \right \rbrace dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\int {e^{-ax^{2}}} dx\text{ +}\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\int {x^{2}e^{-ax^{2}}} dx</math> | ||
<math> | <math>=\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\sqrt {\frac{\pi }{a}} +\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\frac{1}{2}\sqrt {\frac{\pi }{a^{3}}} </math> | ||
<math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | <math>\text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}</math> | ||
Combining these results, we obtain <math>\Delta p=\hbar\sqrt{\frac{a}{2}}</math> | |||
<math>\ | |||
and | and | ||
<math>\ | <math>\Delta x=\frac{1}{\sqrt{2a}}</math> | ||
finally, | finally, | ||
<math>\ | <math>\Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}} =\sqrt {\frac{\hbar ^{2}}{4}} =\frac{\hbar }{2}</math>. | ||
Back to [[Heisenberg Uncertainty Principle]] | Back to [[Heisenberg Uncertainty Principle]] |
Revision as of 16:23, 10 April 2013
Let's say that a particle has wavefunction : Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Psi (x)=\left (\frac{\pi }{a}\right )^{-1/4}e^{-ax^{2}/2}} and we are trying to verify Heisenberg Uncertanity relation.
In order to verify the uncertanity relation, we need to find the uncertainties in position and momentum, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta p=\sqrt{\left \langle {p^{2}} \right \rangle -\left \langle {p} \right \rangle ^{2}}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x=\sqrt{\left \langle {x^{2}} \right \rangle -\left \langle {x} \right \rangle ^{2}}.}
Lets start by calculating the expectation values one by one.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle {x}\rangle =\left \langle {\Psi \left |{x} \right |\Psi } \right \rangle =\int\limits_{-\infty}^{\infty} {x\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} xe^{-ax^{2}}\,dx=0 }
since the integrand is odd and thus the integral over all space is zero.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle {x^{2}} \right \rangle =\left \langle {\Psi \left |{x^{2}} \right |\Psi } \right \rangle } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\int\limits_{-\infty }^{\infty } {x^{2}\left |{\Psi (x)} \right |^{2}\,dx}=\sqrt {\frac{a}{\pi }} \int_{-\infty}^{\infty} x^{2}e^{-ax^{2}}\,dx=\tfrac{1}{2}\sqrt {\frac{a}{\pi }} \sqrt {\frac{\pi }{a^{3}}} =\frac{1}{2a}}
Since the integral is of a Gaussian times a power of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x} , we are able to use the known results for such integrals.
Similarly to Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle {x} \right \rangle, } Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle {p} \right \rangle =\left \langle {\Psi \left |{p} \right |\Psi } \right \rangle =0} because the integrand will be an odd function as well.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left \langle {p^{2}} \right \rangle =\left \langle {\Psi \left |{p^{2}} \right |\Psi } \right \rangle }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt {\frac{a}{\pi }} \int {e^{-ax^{2}/2}} \left (\frac{\hbar }{i}\frac{\partial}{\partial x}\right )^{2}e^{-ax^{2}/2}dx}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \frac{\partial}{\partial x}\left (-\frac{2ax}{2}e^{-ax^{2}/2}\right )\,dx}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt {\frac{a}{\pi }} (-\hbar ^{2})\int {e^{-ax^{2}/2}} \left \lbrace {-ae^{-ax^{2}/2}+\left ({-\frac{2ax}{2}} \right )\left ({-\frac{2ax}{2}} \right )e^{-ax^{2}/2}} \right \rbrace dx}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\int {e^{-ax^{2}}} dx\text{ +}\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\int {x^{2}e^{-ax^{2}}} dx}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sqrt {\frac{a}{\pi }} (\hbar ^{2}a)\sqrt {\frac{\pi }{a}} +\sqrt {\frac{a}{\pi }} (-\hbar ^{2}a^{2})\frac{1}{2}\sqrt {\frac{\pi }{a^{3}}} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{=}(\hbar ^{2}a)-\frac{\hbar ^{2}a}{2}=\frac{\hbar ^{2}a}{2}}
Combining these results, we obtain Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta p=\hbar\sqrt{\frac{a}{2}}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta x=\frac{1}{\sqrt{2a}}}
finally,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Delta p\,\Delta x =\hbar\sqrt{\frac{a}{2}}\frac{1}{\sqrt{2a}} =\sqrt {\frac{\hbar ^{2}}{4}} =\frac{\hbar }{2}} .
Back to Heisenberg Uncertainty Principle