Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
==  Example 1  ==
==  Example 1  ==


(1):the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
so the average energy in state <math> \psi </math> is:
so the average energy in state <math> \psi </math> is:
<math><E>=\iiint \psi^*H\psi d^3x=\iiint \psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x </math>,
<math>\left\langle E\right\rangle=\iiint \psi^{\ast}H\psi\,d^3\textbf{r}=\iiint \psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right )\,d^3\textbf{r}</math>
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,
hence:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*V\psi d^3x</math>,


Using Gauss Theorem for the last term:
Using the identity, <math>\psi^*\nabla^2\psi=\nabla\cdot\left(\psi^*\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi,</math> we obtain
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S}</math>,
with the condition: <math>\lim_{r \to \infty}\psi^*\nabla\psi=0</math>, for infinite surface.


Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi\right )\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r} </math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\psi^{\ast}\cdot\nabla\psi\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r}</math>
 
If we apply Gauss' Theorem to the first term,
 
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S},</math>
 
as well as the condition, <math>\lim_{r \to \infty}\psi^*\nabla\psi=0,</math> we obtain
 
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\psi^{\ast}\cdot\nabla\psi\right ]d^3\textbf{r}</math>


(2):first we find the time derivative of energy density:
(2):first we find the time derivative of energy density:

Revision as of 15:13, 16 April 2013

Example 1

(1) The energy operator in three dimensions is: so the average energy in state is:

Using the identity, we obtain

If we apply Gauss' Theorem to the first term,

as well as the condition, we obtain

(2):first we find the time derivative of energy density:

, ,

Using Schrodinger Equations: , and, ,

Also the energy flux density is: ,

So:, Hence:

Back to Relation Between the Wave Function and Probability Density