Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
== Example 1 == | == Example 1 == | ||
(1) | (1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | ||
so the average energy in state <math> \psi </math> is: | so the average energy in state <math> \psi </math> is: | ||
<math> | <math>\left\langle E\right\rangle=\iiint \psi^{\ast}H\psi\,d^3\textbf{r}=\iiint \psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right )\,d^3\textbf{r}</math> | ||
Using | Using the identity, <math>\psi^*\nabla^2\psi=\nabla\cdot\left(\psi^*\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi,</math> we obtain | ||
<math> | |||
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left (\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)-\nabla\psi^{\ast}\cdot\nabla\psi\right )\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r} </math> | |||
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\psi^{\ast}\nabla\psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\psi^{\ast}\cdot\nabla\psi\,d^3\textbf{r}+\iiint\psi^{\ast}V\psi\,d^3\textbf{r}</math> | |||
If we apply Gauss' Theorem to the first term, | |||
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S},</math> | |||
as well as the condition, <math>\lim_{r \to \infty}\psi^*\nabla\psi=0,</math> we obtain | |||
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left [\frac{\hbar^2}{2m}\nabla\psi^{\ast}\cdot\nabla\psi\right ]d^3\textbf{r}</math> | |||
(2):first we find the time derivative of energy density: | (2):first we find the time derivative of energy density: |
Revision as of 15:13, 16 April 2013
Example 1
(1) The energy operator in three dimensions is: so the average energy in state is:
Using the identity, we obtain
If we apply Gauss' Theorem to the first term,
as well as the condition, we obtain
(2):first we find the time derivative of energy density:
, ,
Using Schrodinger Equations: , and, ,
Also the energy flux density is: ,
So:, Hence:
Back to Relation Between the Wave Function and Probability Density