Phy5645/Transformations and Symmetry Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 73: Line 73:
<math>\hat{F}\hat{F}^{\dagger} = \sum_{i=1}^{N} \sum_{j=1}^{N}|N+1-i\rangle \langle i|j \rangle \langle N+1-j|=\hat{I}.</math>
<math>\hat{F}\hat{F}^{\dagger} = \sum_{i=1}^{N} \sum_{j=1}^{N}|N+1-i\rangle \langle i|j \rangle \langle N+1-j|=\hat{I}.</math>


These two facts imply that <math>\hat{F}</math> is in fact idempotent; i.e. <math>\hat{F}^2=\hat{I}.</math>
These two facts imply that <math>\hat{F}^2=\hat{I}.</math>


Let us now determine if it commutes with the Hamiltonian.
Let us now determine if it commutes with the Hamiltonian.
Line 89: Line 89:
The expressions for <math>\hat{F}\hat{H}</math> and <math>\hat{H}\hat{F}</math> are identical, and thus they commute.
The expressions for <math>\hat{F}\hat{H}</math> and <math>\hat{H}\hat{F}</math> are identical, and thus they commute.


'''(d)''' It has already been proved that F is both unitary and hermitian. Thus the eigenvalues of F are given by
'''(d)''' We saw from the previous part that <math>\hat{F}^2=\hat{I}.</math>. The eigenvalues of <math>\hat{F}</math> are thus <math>\pm 1.</math>


<math>\pm 1</math>
Since <math> F|n\rangle = |N+1-n\rangle, </math> we may construct eigenstates by intuition; let us try


<math>|\psi_\pm\rangle = |n\rangle \pm |N+1-n\rangle,</math>


Since <math> F|n\rangle = |N+1-n\rangle </math> by intuition let us construct states given by
where <math>n=1,2,3,\ldots,\tfrac{1}{2}N.</math> We now act on these states with <math>\hat{F}:</math>


<math> |\psi\pm\rangle = |n\rangle \pm |N+1-n\rangle  n = 1,2,3,….N/2. </math>
<math> F|\psi_\pm\rangle = |N+1-n\rangle \pm |N-N+n\rangle </math>
 
<math> F|\psi\pm\rangle = |N+1-n\rangle \pm |N-N+n\rangle </math>


<math> = \pm( |n\rangle \pm |N+1-n\rangle ) </math>
<math> = \pm( |n\rangle \pm |N+1-n\rangle ) </math>


<math> = \pm|\psi\pm\rangle </math>
<math> = \pm|\psi_\pm\rangle </math>


Thus <math> |\psi\pm\rangle </math> thus constructed are eigenstates of F. It is noted that we have <math> N/2 </math> symmetric eigenstates given by
Therefore, the states <math> |\psi_\pm\rangle </math> are in fact eigenstates of <math>\hat{F}</math>. It is noted that we have <math>\tfrac{1}{2}N</math> symmetric eigenstates given by


<math> |1\rangle + |N\rangle ; |2\rangle + |N-1\rangle ; |3\rangle +|N-2\rangle   … </math> and <math> N/2 </math> anti-symmetric eigenstates given by
<math>|1\rangle + |N\rangle, |2\rangle + |N-1\rangle, |3\rangle +|N-2\rangle, \ldots</math>


<math> |1\rangle - |N\rangle ; |2\rangle - |N-1\rangle ; |3\rangle -|N-2\rangle ;  … </math>
and <math>\tfrac{1}{2}N</math> anti-symmetric eigenstates given by


<math>|1\rangle - |N\rangle, |2\rangle - |N-1\rangle, |3\rangle -|N-2\rangle, \ldots</math>


<math> H (|n\rangle \pm |N+1-n\rangle) </math>
<math> H (|n\rangle \pm |N+1-n\rangle) </math>

Revision as of 15:11, 23 July 2013

(a) Given the action of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} on a state,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}|n\rangle = |n+1\rangle,}

we find that the matrix elements of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} are

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle i|T|j\rangle = \delta_{1,j+1}.}

We may therefore write Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T} = \sum_{n=1}^{N} |n+1\rangle\langle n|,}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle.} The Hermitian adjoint is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle n+1|,}

so

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}\hat{T}^\dagger = \sum_{m=1}^{N}\sum_{n=1}^{N}(|m+1\rangle\langle m|)(|n\rangle\langle n+1|) = \sum_{m=1}^{N}\sum_{n=1}^{N}\delta_{m,n}|m+1\rangle\langle n+1|= \sum_{n=1}^{N}|n\rangle\langle n| = \hat{I}.}

We have thus shown that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} is unitary.

Let us now find the commutator of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} with the Hamiltonian.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [\hat{T},\hat{H}] = \sum_{m=1}^{N}\sum_{n=1}^{N}[(|m+1\rangle\langle m|)(|n\rangle \langle n+1| + |n+1\rangle \langle n|) - (|n\rangle \langle n+1| + |n+1\rangle \langle n|)(|m+1\rangle\langle m|)]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+1\rangle\langle n+1| + |n+2\rangle\langle n| - |n\rangle\langle n| - |n+1\rangle\langle n-1|]}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=2}^{N+1}|n\rangle\langle n| + \sum_{n=2}^{N+1}|n+1\rangle\langle n-1| - \sum_{n=1}^{N}|n\rangle\langle n| - \sum_{n=1}^{N}|n+1\rangle\langle n-1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+2\rangle\langle n| - |n+1\rangle\langle n-1| = 0 }

Therefore, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}} commutes with the Hamiltonian.

(b) Let us act on the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}:}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T}|\psi \rangle = \sum_{n=1}^{N} e^{ikn}|n\rangle= \sum_{n=1}^{N} e^{ikn}|n+1\rangle=\sum_{n=2}^{N+1}e^{ik(n-1)}|n\rangle=e^{-ik}\left [\sum_{n=2}^{N} e^{ikn}|n\rangle + e^{ik(N+1)}|1\rangle\right ]}

The expression in the brackets is almost Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle,} except that the state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle} in general has the "wrong" coefficient. We may obtain the correct coefficient, and thus an eigenstate of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T},} if

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{ikN} = 1.\!}

This is satisfied if

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=\frac{2\pi n}{N},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0\leq n<N} is an integer. This range of values gives all of the unique eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{T},} each with eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e^{-ik}.\!}

We may show that these are also eigenstates of the Hamiltonian, as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}|\psi\rangle=\sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|) \sum_{m=1}^{N} e^{ikm}|m\rangle}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\sum_{n=1}^{N} e^{ik(n+1)}|n\rangle + \sum_{n=1}^{N} e^{ikn}|n+1\rangle }

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = 2\cos{k}|\psi\rangle}

We therefore find that the states Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi\rangle} are also eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}} with eigenvalue Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\cos{k}.\!} Note that all of these states, except for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k=0,\!} are two-fold degenerate - if we replace Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k\!} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\pi-k,\!} then we obtain a state with the same eigenvalue.

(c) Similarly to the previous case, we may conclude from the fact that the effect of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}} is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}|j\rangle = |N+1-j\rangle}

that the operator may be written as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F} = \sum_{n=1}^{N} |N+1-n\rangle\langle n|.}

The Hermitian adjoint is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle N+1-n|=\hat{F}.}

We may see that the last equality is true by replacing Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n\!} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N+1-n,\!} and thus that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}} is Hermitian. We may see that it is also unitary as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}\hat{F}^{\dagger} = \sum_{i=1}^{N} \sum_{j=1}^{N}|N+1-i\rangle \langle i|j \rangle \langle N+1-j|=\hat{I}.}

These two facts imply that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}^2=\hat{I}.}

Let us now determine if it commutes with the Hamiltonian.

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{F}\hat{H} = \sum_{m=1}^{N} |N+1-m\rangle\langle m| \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \hat{H}\hat{F} = \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|) \sum_{m=1}^{N} |N+1-m\rangle\langle m|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+2-n\rangle \langle n| + \sum_{n=1}^{N} |N-n\rangle \langle n|}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N} |N+1-n\rangle \langle n-1| + \sum_{n=1}^{N} |N+1-n\rangle \langle n+1|}

The expressions for and are identical, and thus they commute.

(d) We saw from the previous part that . The eigenvalues of are thus

Since we may construct eigenstates by intuition; let us try

where We now act on these states with

Therefore, the states are in fact eigenstates of . It is noted that we have symmetric eigenstates given by

and anti-symmetric eigenstates given by

Thus we find that the eigenstate of F may not necessarily be eigenstates oh H. This is because F is degenerate. However there may exist linear superposition of eigenstates of F which is also an eigenstates of H and vice versa.

Back to Transformations of Operators and Symmetry