Phy5645/Square Wave Potential Problem: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Let us once again confine our attention to the region, <math>0 < x < a.\!</math> The wave function for this region is given by | |||
<math>\psi_k(x)= | |||
\begin{cases} | |||
Ae^{ik_1x}+Be^{-ik_1x}, & 0 < x < c \\ | |||
Ce^{ik_2x}+De^{-ik_2x}, & c < x < a, | |||
\end{cases} | |||
</math> | |||
where <math>k_1=\frac{\sqrt{2mE}}{\hbar}</math> and <math>k_2=\frac{\sqrt{2m(E-V_0)}}{\hbar}.</math> | |||
By Bloch's theorem, the full wave function must have the form, | |||
:<math>\psi_k(x)=e^{ikx}u_k(x).\!</math> | |||
<math> | Continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=c\!</math> requires that | ||
:<math> Ae^{ik_1c}+Be^{-ik_1c}=Ce^{ik_2c}+De^{-ik_2c}\!</math> | |||
and | |||
:<math> ik_1(Ae^{ik_1c}-Be^{-ik_1c})=ik_2(Ce^{ik_2c}-De^{-ik_2c}).\!</math> | |||
<math> | The periodicity of <math>u_k(x)\!</math> and continuity of <math>\psi_k(x)\!</math> and <math>\psi'_k(x)\!</math> at <math>x=a\!</math> gives us | ||
:<math>Ce^{ik_2a}+De^{-ik_2a}=e^{ika}(A+B)\!</math> | |||
and | |||
:<math>ik_2(Ce^{ik_2a}-De^{-ik_2a})=ik_1e^{ika}(A-B).\!</math> | |||
<math>A | We have thus obtained four linear equations in <math>A,\!</math> <math>B,\!</math> <math>C,\!</math> and <math>D.\!</math> To derive the condition under which these equations have a nontrivial solution, we first eliminate <math>C\!</math> and <math>D\!</math> and then determine when the resulting <math>2\times 2\!</math> system has nontrivial solutions; this yields the condition, | ||
:<math>\cos{ka}=\cos{k_1 c}\cos{k_2 b}-\frac{k_1^2+k_2^2}{2k_1k_2}\sin{k_1 c}\sin{k_2 b},</math> | |||
<math> | where <math>b=a-c\!</math> is the width of the "barrier" parts of the potential. This, along with the equation, | ||
<math>k_1^2-k_2^2=\frac{2mV_0}{\hbar^2},</math> | |||
yields the energy spectrum of the system. | |||
If we take the limit <math> V_0 \rightarrow \infty \!</math> and <math> b \rightarrow 0 \!</math> in such a way as to keep <math>V_0b\!</math> finite, then we can obtain: | |||
<math> | :<math>-ik_2 b=-i\sqrt{\frac{2m}{\hbar^2}(E-V_0)b^2}\approx \sqrt{\frac{2mb}{\hbar^2}(V_0b)}\ll 1</math> | ||
In this limit, | |||
<math> \ | :<math>\sin{k_2b}\approx k_2b </math> | ||
and | |||
:<math>\cos{k_2b}\approx 1.</math> | |||
<math> | Our equations then reduce to, noting that <math>c=a\!</math> in this limit, | ||
:<math>\cos(ka)=\cos(k_1a)+\frac{mV_0ab}{\hbar^2}\frac{\sin(k_1a)}{k_1a}.</math> | |||
This is just the equation that we obtained for the Dirac comb potential; note that, here, <math>V_0b\!</math> stands for the <math> V_0\!</math> in the Dirac comb problem described earlier. | |||
for <math> | |||
Back to [[Motion in a Periodic Potential]] | Back to [[Motion in a Periodic Potential]] |
Revision as of 16:07, 6 August 2013
Let us once again confine our attention to the region, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 0 < x < a.\!} The wave function for this region is given by
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(x)= \begin{cases} Ae^{ik_1x}+Be^{-ik_1x}, & 0 < x < c \\ Ce^{ik_2x}+De^{-ik_2x}, & c < x < a, \end{cases} }
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1=\frac{\sqrt{2mE}}{\hbar}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_2=\frac{\sqrt{2m(E-V_0)}}{\hbar}.}
By Bloch's theorem, the full wave function must have the form,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(x)=e^{ikx}u_k(x).\!}
Continuity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(x)\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi'_k(x)\!} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=c\!} requires that
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ae^{ik_1c}+Be^{-ik_1c}=Ce^{ik_2c}+De^{-ik_2c}\!}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ik_1(Ae^{ik_1c}-Be^{-ik_1c})=ik_2(Ce^{ik_2c}-De^{-ik_2c}).\!}
The periodicity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u_k(x)\!} and continuity of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi_k(x)\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi'_k(x)\!} at Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle x=a\!} gives us
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle Ce^{ik_2a}+De^{-ik_2a}=e^{ika}(A+B)\!}
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle ik_2(Ce^{ik_2a}-De^{-ik_2a})=ik_1e^{ika}(A-B).\!}
We have thus obtained four linear equations in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle A,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle B,\!} Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C,\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D.\!} To derive the condition under which these equations have a nontrivial solution, we first eliminate Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle C\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle D\!} and then determine when the resulting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2\times 2\!} system has nontrivial solutions; this yields the condition,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{ka}=\cos{k_1 c}\cos{k_2 b}-\frac{k_1^2+k_2^2}{2k_1k_2}\sin{k_1 c}\sin{k_2 b},}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b=a-c\!} is the width of the "barrier" parts of the potential. This, along with the equation,
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle k_1^2-k_2^2=\frac{2mV_0}{\hbar^2},}
yields the energy spectrum of the system.
If we take the limit Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0 \rightarrow \infty \!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle b \rightarrow 0 \!} in such a way as to keep Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0b\!} finite, then we can obtain:
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -ik_2 b=-i\sqrt{\frac{2m}{\hbar^2}(E-V_0)b^2}\approx \sqrt{\frac{2mb}{\hbar^2}(V_0b)}\ll 1}
In this limit,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sin{k_2b}\approx k_2b }
and
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos{k_2b}\approx 1.}
Our equations then reduce to, noting that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle c=a\!} in this limit,
- Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \cos(ka)=\cos(k_1a)+\frac{mV_0ab}{\hbar^2}\frac{\sin(k_1a)}{k_1a}.}
This is just the equation that we obtained for the Dirac comb potential; note that, here, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0b\!} stands for the Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V_0\!} in the Dirac comb problem described earlier.
Back to Motion in a Periodic Potential