Phy5645/Particle in Uniform Magnetic Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
'''(a)''' In the symmetric gauge, <math>A_{x}=-\tfrac{1}{2}By,</math> <math>A_{y}=\tfrac{1}{2}Bx,</math> and <math>A_{z}=0.\!</math> | |||
<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\ | <math> | ||
\begin{align} | |||
\left [{\Pi _{x},\Pi _{y}} \right ]&=\left [p_{x}-\frac{e}{c}A_{x},P_{y}-\frac{e}{c}A_{y}\right ]=\left [p_{x}+\frac{eBy}{2c},p_{y}-\frac{eBx}{2c}\right ] \\ | |||
&=\left (\left [p_{x},p_{y}\right ]-\left [p_{x},\frac{eBx}{2c}\right ]+\left [\frac{eBy}{2c},p_{y}\right ]-\left [\frac{eBy}{2c},\frac{eBx}{2c}\right ]\right ) \\ | |||
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c} | |||
\end{align} | |||
</math> | |||
'''(b) The Hamiltonian for the system is | |||
<math> | <math> | ||
\begin{align} | |||
H&=\frac{1}{2m}\left (\mathbf{P}-\frac{e}{c}\mathbf{A}\right )^2 \\ | |||
&=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}+\frac{p_{z}^{2}}{2m}. | |||
\end{align} | |||
</math> | |||
<math>\text{= | If we label the first two terms as <math>\text{H}_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math>, and the last one as <math>H_{2}=\frac{p_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>H=H_{1}+H_{2}\!</math>. | ||
<math> | |||
<math>H_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math> | |||
<math>H_{1}=\frac{\ | |||
<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math> | <math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math> |
Revision as of 11:21, 13 August 2013
(a) In the symmetric gauge, and
(b) The Hamiltonian for the system is
If we label the first two terms as , and the last one as , then we may write the Hamiltonian as .
Then the Hamiltonian will look like where and .
As we know,
So now we can write that;