Phy5645/Particle in Uniform Magnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
*According to the Landau gauge, <math>\text{A}_{x}=\frac{-By}{2}\text{  A}_{y}=\frac{Bx}{2}\text{  A}_{z}=0</math>
'''(a)''' In the symmetric gauge, <math>A_{x}=-\tfrac{1}{2}By,</math> <math>A_{y}=\tfrac{1}{2}Bx,</math> and <math>A_{z}=0.\!</math>


<math>\left [{\Pi _{x},\Pi _{y}} \right ]=\left [{\left ({P_{x}-\frac{e}{c}A_{x}} \right ),\left ({P_{y}-\frac{e}{c}A_{y}} \right )} \right ]</math>
<math>
\begin{align}
\left [{\Pi _{x},\Pi _{y}} \right ]&=\left [p_{x}-\frac{e}{c}A_{x},P_{y}-\frac{e}{c}A_{y}\right ]=\left [p_{x}+\frac{eBy}{2c},p_{y}-\frac{eBx}{2c}\right ] \\
&=\left (\left [p_{x},p_{y}\right ]-\left [p_{x},\frac{eBx}{2c}\right ]+\left [\frac{eBy}{2c},p_{y}\right ]-\left [\frac{eBy}{2c},\frac{eBx}{2c}\right ]\right ) \\
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c}
\end{align}
</math>


<math>=\left [{\left ({P_{x}+\frac{eBy}{2c}} \right ),\left ({P_{y}-\frac{eBx}{2c}} \right )} \right ]</math>
'''(b) The Hamiltonian for the system is


<math>=\left \lbrace {\left [{P_{x},P_{y}} \right ]-\left [{P_{x}, \frac{eBx}{2c}} \right ]+\left [{\frac{eBy}{2c},P_{y}} \right ]-\left [{\frac{eBy}{2c},\frac{eBx}{2c}} \right ]} \right \rbrace </math>
<math>
\begin{align}
H&=\frac{1}{2m}\left (\mathbf{P}-\frac{e}{c}\mathbf{A}\right )^2 \\
&=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}+\frac{p_{z}^{2}}{2m}.
\end{align}
</math>


<math>\text{= -}\frac{eB}{2c}(-i\hbar )+\frac{eB}{2c}(i\hbar )</math>
If we label the first two terms as <math>\text{H}_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math>, and the last one as <math>H_{2}=\frac{p_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>H=H_{1}+H_{2}\!</math>.
<math>\text{=}i\hbar \frac{eB}{c}</math>


 
<math>H_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math>
*The Hamiltonian for the system is;
 
<math>H=\frac{(\overrightarrow{P}-\frac{e\overrightarrow{A}}{c})^{2}}{2m}</math>
 
<math> =\frac{\left ({P_{x}-\frac{e}{c}A_{x}} \right )^{2}}{2m}+\frac{\left ({P_{y}-\frac{e}{c}A_{y}} \right )^{2}}{2m}+\frac{\left ({P_{z}-\frac{e}{c}A_{z}} \right )^{2}}{2m}</math>
 
<math>\text{=}\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}+\frac{P_{z}^{2}}{2m}</math>
 
If we define first two terms as <math>\text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>, and the last one as <math>\text{H}_{2}=\frac{P_{z}^{2}}{2m}</math>,
The Hamiltonian will be <math>\text{H=H}_{1}+H_{2}\!</math>.
 
<math>H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}</math>


<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>
<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>

Revision as of 11:21, 13 August 2013

(a) In the symmetric gauge, and

(b) The Hamiltonian for the system is

If we label the first two terms as , and the last one as , then we may write the Hamiltonian as .

Then the Hamiltonian will look like where and .

As we know,

So now we can write that;