Phy5645/Particle in Uniform Magnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 3: Line 3:
<math>
<math>
\begin{align}
\begin{align}
\left [{\Pi _{x},\Pi _{y}} \right ]&=\left [p_{x}-\frac{e}{c}A_{x},P_{y}-\frac{e}{c}A_{y}\right ]=\left [p_{x}+\frac{eBy}{2c},p_{y}-\frac{eBx}{2c}\right ] \\
\left [{\hat{\Pi}_{x},\hat{\Pi}_{y}} \right ]&=\left [\hat{p}_{x}-\frac{e}{c}A_{x},\hat{p}_{y}-\frac{e}{c}A_{y}\right ]=\left [\hat{p}_{x}+\frac{eB}{2c}\hat{y},\hat{p}_{y}-\frac{eB}{2c}\hat{x}\right ] \\
&=\left (\left [p_{x},p_{y}\right ]-\left [p_{x},\frac{eBx}{2c}\right ]+\left [\frac{eBy}{2c},p_{y}\right ]-\left [\frac{eBy}{2c},\frac{eBx}{2c}\right ]\right ) \\
&=\left (\left [\hat{p}_{x},\hat{p}_{y}\right ]-\left [\hat{p}_{x},\frac{eB}{2c}\hat{x}\right ]+\left [\frac{eB}{2c}\hat{y},\hat{p}_{y}\right ]-\left [\frac{eB}{2c}\hat{y},\frac{eB}{2c}\hat{x}\right ]\right ) \\
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c}
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c}
\end{align}
\end{align}
Line 13: Line 13:
<math>
<math>
\begin{align}
\begin{align}
H&=\frac{1}{2m}\left (\mathbf{P}-\frac{e}{c}\mathbf{A}\right )^2 \\
\hat{H}&=\frac{1}{2m}\left (\hat{\mathbf{p}}-\frac{e}{c}\mathbf{A}\right )^2 \\
&=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}+\frac{p_{z}^{2}}{2m}.
&=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}.
\end{align}
\end{align}
</math>
</math>


If we label the first two terms as <math>\text{H}_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math>, and the last one as <math>H_{2}=\frac{p_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>H=H_{1}+H_{2}\!</math>.
If we label the first two terms as <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>, and the last one as <math>\hat{H}_{2}=\frac{\hat{p}_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>\hat{H}=\hat{H}_{1}+\hat{H}_{2}.</math>


<math>H_{1}=\frac{\Pi_{x}^{2}}{2m}+\frac{\Pi_{y}^{2}}{2m}</math>
<math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>


<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>
<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>

Revision as of 11:26, 13 August 2013

(a) In the symmetric gauge, and

(b) The Hamiltonian for the system is

If we label the first two terms as , and the last one as , then we may write the Hamiltonian as

Then the Hamiltonian will look like where and .

As we know,

So now we can write that;

Back to Charged Particles in an Electromagnetic Field.