Phy5645/Particle in Uniform Magnetic Field: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
\left [{\Pi _{x},\Pi _{y}} \right ]&=\left [ | \left [{\hat{\Pi}_{x},\hat{\Pi}_{y}} \right ]&=\left [\hat{p}_{x}-\frac{e}{c}A_{x},\hat{p}_{y}-\frac{e}{c}A_{y}\right ]=\left [\hat{p}_{x}+\frac{eB}{2c}\hat{y},\hat{p}_{y}-\frac{eB}{2c}\hat{x}\right ] \\ | ||
&=\left (\left [ | &=\left (\left [\hat{p}_{x},\hat{p}_{y}\right ]-\left [\hat{p}_{x},\frac{eB}{2c}\hat{x}\right ]+\left [\frac{eB}{2c}\hat{y},\hat{p}_{y}\right ]-\left [\frac{eB}{2c}\hat{y},\frac{eB}{2c}\hat{x}\right ]\right ) \\ | ||
&=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c} | &=-\frac{eB}{2c}(-i\hbar)+\frac{eB}{2c}(i\hbar)=i\hbar \frac{eB}{c} | ||
\end{align} | \end{align} | ||
Line 13: | Line 13: | ||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
H&=\frac{1}{2m}\left (\mathbf{ | \hat{H}&=\frac{1}{2m}\left (\hat{\mathbf{p}}-\frac{e}{c}\mathbf{A}\right )^2 \\ | ||
&=\frac{\ | &=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}+\frac{\hat{p}_{z}^{2}}{2m}. | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
If we label the first two terms as <math>\ | If we label the first two terms as <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>, and the last one as <math>\hat{H}_{2}=\frac{\hat{p}_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>\hat{H}=\hat{H}_{1}+\hat{H}_{2}.</math> | ||
<math> | <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math> | ||
<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math> | <math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math> |
Revision as of 11:26, 13 August 2013
(a) In the symmetric gauge, and
(b) The Hamiltonian for the system is
If we label the first two terms as , and the last one as , then we may write the Hamiltonian as
Then the Hamiltonian will look like where and .
As we know,
So now we can write that;