Phy5645/Particle in Uniform Magnetic Field: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 18: Line 18:
</math>
</math>


If we label the first two terms as <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>, and the last one as <math>\hat{H}_{2}=\frac{\hat{p}_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>\hat{H}=\hat{H}_{1}+\hat{H}_{2}.</math>
If we label the first two terms as <math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>, and the last one as <math>\hat{H}_{2}=\frac{\hat{p}_{z}^{2}}{2m}</math>, then we may write the Hamiltonian as <math>\hat{H}=\hat{H}_{1}+\hat{H}_{2}.</math> Using the identity,


<math>\hat{H}_{1}=\frac{\hat{\Pi}_{x}^{2}}{2m}+\frac{\hat{\Pi}_{y}^{2}}{2m}</math>
<math>\hat{A}^2+\hat{B}^2=\left (\hat{A}-i\hat{B}\right )\left (\hat{A}+i\hat{B}\right )-i\left [\hat{A},\hat{B}\right ],</math>


<math>=\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}</math>
we may rewrite <math>\hat{H}_1</math> as


<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2m}\left ({\frac{m^{2}}{m^{2}}} \right )\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>
<math>\hat{H}_1=\frac{1}{2m}\left (\hat{\Pi}_x-i\hat{\Pi}_y\right )\left (\hat{\Pi}_x+i\hat{\Pi}_y\right )+\frac{\hbar eB}{2mc}.</math>


<math>=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}</math>
If we now define the operators,


Then the Hamiltonian will look like <math>\text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}</math>  where <math> \tilde{w}= \left ({\frac{eB}{cm}} \right )</math>  and <math>\tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )</math>.
<math>\hat{a}=\sqrt{\frac{c}{2\hbar eB}}\left (\hat{\Pi}_x+i\hat{\Pi}_y\right )</math>


As we know, <math> \text{H}\Psi =E\Psi \!</math>
and


<math> \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} </math>
<math>\hat{a}^\dagger=\sqrt{\frac{c}{2\hbar eB}}\left (\hat{\Pi}_x-i\hat{\Pi}_y\right ),</math>


<math>\text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math>
this becomes


So now we can write that;
<math>\hat{H}_1=\hbar\omega\left (\hat{a}\dagger\hat{a}+\tfrac{1}{2}\right ),</math>


<math>\text{E}_{k,n}=\hbar\frac{eB}{cm}(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math>
where <math>\omega=\frac{eB}{mc}.</math>  This is just the Hamiltonian for a [[Harmonic Oscillator States and Eigenvalues|harmonic oscillator]].  The contribution to the energy from this term is therefore
 
<math>E_1=\left (n+\tfrac{1}{2}\right )\hbar\omega.</math>
 
The remaining part of the Hamiltonian, <math>\hat{H}_2,</math> is just that of a free particle in one dimension, and thus its contribution to the energy is just <math>E_2=\frac{\hbar^2k_z^2}{2m}.</math>  The total energy is then just
 
<math>E=\left (n+\frac{1}{2}\right )\hbar\omega+\frac{\hbar^{2}k_z^{2}}{2m}.</math>


Back to [[Charged Particles in an Electromagnetic Field]].
Back to [[Charged Particles in an Electromagnetic Field]].

Revision as of 11:48, 13 August 2013

(a) In the symmetric gauge, and

(b) The Hamiltonian for the system is

If we label the first two terms as , and the last one as , then we may write the Hamiltonian as Using the identity,

we may rewrite as

If we now define the operators,

and

this becomes

where This is just the Hamiltonian for a harmonic oscillator. The contribution to the energy from this term is therefore

The remaining part of the Hamiltonian, is just that of a free particle in one dimension, and thus its contribution to the energy is just The total energy is then just

Back to Charged Particles in an Electromagnetic Field.