Logarithmic Potential in WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
<math> (n - \frac{1}{4})\pi h = \int_{0}^{r_{0}}\sqrt{2m[E-V_{0} ln(r/a)]}dr </math>
The Bohr-Sommerfeld quantization condition for this problem is


<math>( E = V_{0} ln(r_{0}/a) '''defines''' r_{0} )</math>
<math>\int_{0}^{x_{0}}\sqrt{2m\left [E-V_{0}\ln\left (\frac{x}{a}\right )\right ]}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math>


= <math> \sqrt{2m} \int_{0}^{r_{0} } \sqrt{ V_{0} ln(r_{0} / a) - V_{0} ln(r/a) } dr  = \sqrt{ 2m V_{0}} \int_{0}^{r_{0}}\sqrt{ln(r_{0} / a)}dr</math>
Note that <math>E=V_{0}\ln\left (\frac{x_{0}}{a}\right )</math> ''defines'' <math>x_{0}.\!</math> We may then rewrite the integral as


'''Let''' <math> x\equiv ln(r_{0}/a)</math>
<math>\sqrt{ 2m V_{0}} \int_{0}^{xr_{0}}\sqrt{ln\left (\frac{x_{0}}{x}\right )}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math>


'''so''' <math> e^{x} = r_{0}/r </math>'''or''' <math> r = r_{0}e^{-x} \Rightarrow dr = -r_{0}e^{-x}dx
Let us now make the substitution, <math>\xi=\ln\left (\frac{x_{0}}{x}\right ).</math>  We then obtain


(n-\frac{1}{4})\pi \hbar = \sqrt{2mV_{0}}(-r_{0})\int_{x_{1}}^{x_{2}}\sqrt{x}e^{-e}dx </math> '''. Limits :''' <math> \begin{cases}
<math>\sqrt{2mV_{0}}x_{0}\int_{0}^{\infty}\sqrt{x}e^{-x}\,dx=(n-\tfrac{1}{4})\pi \hbar,</math>
& \text{  } r=0 \Rightarrow x_{1}=\infty  \\
 
& \text{ } r=r_{0} \Rightarrow x_{2}=0
or, evaluating the integral,
\end{cases}
 
</math>
<math>\tfrac{1}{2}\sqrt{2\pi mV_{0}}x_{0}=(n-\tfrac{1}{4})\pi \hbar.</math>
<math> (n-\frac{1}{4})\pi \hbar = \sqrt{2mV_{0}}(r_{0})\int_{0}^{\infty }\sqrt{x}e^{-x}dx=\sqrt{2mV_{0}}r_{0}\Gamma (3/2)=\sqrt{2mV_{0}}r_{0}\frac{\sqrt{\pi }}{2} </math>


<math> r_{0}=\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})\Rightarrow E_{n}=V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})]=V_{0}ln(n-\frac{1}{4})+V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}] </math>
<math> r_{0}=\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})\Rightarrow E_{n}=V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})]=V_{0}ln(n-\frac{1}{4})+V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}] </math>

Revision as of 03:10, 13 January 2014

The Bohr-Sommerfeld quantization condition for this problem is

Note that defines We may then rewrite the integral as

Let us now make the substitution, We then obtain

or, evaluating the integral,

,which is indeed independent of m (and a).

Back to WKB Approximation