Logarithmic Potential in WKB: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
The Bohr-Sommerfeld quantization condition for this problem is | |||
<math> | <math>\int_{0}^{x_{0}}\sqrt{2m\left [E-V_{0}\ln\left (\frac{x}{a}\right )\right ]}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math> | ||
Note that <math>E=V_{0}\ln\left (\frac{x_{0}}{a}\right )</math> ''defines'' <math>x_{0}.\!</math> We may then rewrite the integral as | |||
<math>\sqrt{ 2m V_{0}} \int_{0}^{xr_{0}}\sqrt{ln\left (\frac{x_{0}}{x}\right )}\,dx=(n - \tfrac{1}{4})\pi\hbar.</math> | |||
Let us now make the substitution, <math>\xi=\ln\left (\frac{x_{0}}{x}\right ).</math> We then obtain | |||
<math>\sqrt{2mV_{0}}x_{0}\int_{0}^{\infty}\sqrt{x}e^{-x}\,dx=(n-\tfrac{1}{4})\pi \hbar,</math> | |||
or, evaluating the integral, | |||
\ | |||
</math> | <math>\tfrac{1}{2}\sqrt{2\pi mV_{0}}x_{0}=(n-\tfrac{1}{4})\pi \hbar.</math> | ||
<math> | |||
<math> r_{0}=\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})\Rightarrow E_{n}=V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})]=V_{0}ln(n-\frac{1}{4})+V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}] </math> | <math> r_{0}=\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})\Rightarrow E_{n}=V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}(n-\frac{1}{4})]=V_{0}ln(n-\frac{1}{4})+V_{0}ln[\frac{\hbar}{a}\sqrt{\frac{2\pi }{mV_{0}}}] </math> |
Revision as of 03:10, 13 January 2014
The Bohr-Sommerfeld quantization condition for this problem is
Note that defines We may then rewrite the integral as
Let us now make the substitution, We then obtain
or, evaluating the integral,
,which is indeed independent of m (and a).
Back to WKB Approximation