Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(11 intermediate revisions by 2 users not shown)
Line 1: Line 1:
==  Example 1  ==
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
Consider a particle moving in a potential field <math>V(\textbf{r})</math>, (1) Prove the average energy equation: <math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>,
so the average energy in state <math> \Psi </math> is:
where W is energy density, (2) Prove the energy conservation equation: <math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>, where <math>\textbf{S}</math> is energy flux density: <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>
<math>\left\langle E\right\rangle=\iiint \Psi^{\ast}H\Psi\,d^3\textbf{r}=\iiint \Psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi\right )\,d^3\textbf{r}</math>


Proof:
Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain
(1):the energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math>
so the average energy in state <math> \psi </math> is:
<math><E>=\iiint \psi^*H\psi d^3x=\iiint \psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x </math>,
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,
hence:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left(\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi\right)d^3x +\iiint\psi^*\nabla\psi d^3x </math>
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right)d^3x + \frac{\hbar^2}{2m}\iiint\nabla\psi^*\nabla\psi d^3x + \iiint\psi^*V\psi d^3x</math>,


Using Gauss Theorem for the last term:
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left [\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right ]\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math>
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\psi^*\nabla\psi\right) d^3x=\iint\psi^*\nabla\psi\cdot d\textbf{S}</math>,
<math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math>
with the condition: <math>\lim_{r \to \infty}\psi^*\nabla\psi=0</math>, for infinite surface.


Hence:<math><E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x</math>
If we apply Gauss' Theorem to the first term,


(2):first we find the time derivative of energy density:
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left (\Psi^{\ast}\nabla\Psi\right )\,d^3\textbf{r}=\iint\Psi^{\ast}\nabla\Psi\cdot d\textbf{S},</math>
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left(\nabla\psi^*\nabla\psi+\psi^*\nabla\psi\right)
=\frac{\hbar^2}{2m}\left(\nabla\psi^*\nabla\frac{\partial\psi}{\partial t} + \nabla\frac{\partial\psi^*}{\partial t}\nabla\psi\right) + \frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>,
<math>=\frac{\hbar^2}{2m}\left(\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right) - \left(\frac{\partial\psi}{\partial t}\nabla^2\psi^*+\frac{\partial\psi^*}{\partial t}\nabla^2\psi\right)\right)+\frac{\partial\psi^*}{\partial t}\nabla\psi+\psi^*\nabla\frac{\partial\psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\nabla\cdot\left(\nabla\psi^*\cdot\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\cdot\nabla\psi\right)+\frac{\partial\psi^*}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi\right)+\frac{\partial\psi}{\partial t}\left(-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*\right)</math>,


Using Schrodinger Equations:
as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain
<math>i\hbar\frac{\partial\psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi+\nabla\psi</math>,
and, <math>-i\hbar\frac{\partial\psi^*}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\psi^*+\nabla\psi^*</math>,


Also the energy flux density is:
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left (\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right )d^3\textbf{r}</math>
<math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\psi^*}{\partial t}\nabla\psi + \frac{\partial\psi}{\partial t}\nabla\psi^*\right)</math>,


So:<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\psi^*}{\partial t}\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial t}\frac{\partial\psi^*}{\partial t}=-\nabla\cdot\textbf{S}</math>,
(2) We first find the time derivative of energy density:
Hence:
 
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math>
<math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left (\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right )
=\frac{\hbar^2}{2m}\left (\nabla\Psi^{\ast}\cdot\nabla\frac{\partial\Psi}{\partial t} + \nabla\frac{\partial\Psi^{\ast}}{\partial t}\cdot\nabla\Psi\right ) + \frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\left [\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\psi}{\partial t} + \frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right) - \left (\frac{\partial\Psi}{\partial t}\nabla^2\Psi^{\ast}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla^2\Psi\right )\right ]+\frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math>
<math>=\frac{\hbar^2}{2m}\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right)+\frac{\partial\Psi^{\ast}}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi\right )+\frac{\partial\Psi}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+\nabla\Psi^{\ast}\right )</math>,
 
Using the Schrödinger equation,
<math>i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi+V\Psi,</math>
 
and its complex conjugate,
<math>-i\hbar\frac{\partial\Psi^{\ast}}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+V\Psi^{\ast},</math>
 
and defining the energy flux density as <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi + \frac{\partial\Psi}{\partial t}\nabla\Psi^{\ast}\right ),</math>
 
We obtain
<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\Psi^{\ast}}{\partial t}\frac{\partial\Psi}{\partial t}-\frac{\partial\Psi}{\partial t}\frac{\partial\Psi^{\ast}}{\partial t}=-\nabla\cdot\textbf{S},</math>
 
or, rearranging,
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0.</math>
 
Back to [[Relation Between the Wave Function and Probability Density#Problems|Relation Between the Wave Function and Probability Density]]

Latest revision as of 13:21, 18 January 2014

(1) The energy operator in three dimensions is: so the average energy in state is:

Using the identity, we obtain

If we apply Gauss' Theorem to the first term,

as well as the condition, we obtain

(2) We first find the time derivative of energy density:

,

Using the Schrödinger equation,

and its complex conjugate,

and defining the energy flux density as

We obtain

or, rearranging,

Back to Relation Between the Wave Function and Probability Density