Phy5645/Energy conservation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
|||
(11 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
(1) The energy operator in three dimensions is: <math>H=-\frac{\hbar^2}{2m}\nabla^2+V</math> | |||
so the average energy in state <math> \Psi </math> is: | |||
<math>\left\langle E\right\rangle=\iiint \Psi^{\ast}H\Psi\,d^3\textbf{r}=\iiint \Psi^{\ast}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi + V\Psi\right )\,d^3\textbf{r}</math> | |||
Using the identity, <math>\Psi^*\nabla^2\Psi=\nabla\cdot\left(\Psi^*\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi,</math> we obtain | |||
<math>\left\langle E\right\rangle=-\frac{\hbar^2}{2m}\iiint\left [\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)-\nabla\Psi^{\ast}\cdot\nabla\Psi\right ]\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r} </math> | |||
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left(\ | <math>=-\frac{\hbar^2}{2m}\iiint\nabla\cdot\left (\Psi^{\ast}\nabla\Psi\right)\,d^3\textbf{r}+\frac{\hbar^2}{2m}\iiint\nabla\Psi^{\ast}\cdot\nabla\Psi\,d^3\textbf{r}+\iiint\Psi^{\ast}V\Psi\,d^3\textbf{r}</math> | ||
If we apply Gauss' Theorem to the first term, | |||
<math>-\frac{\hbar^2}{2m}\iiint\nabla\left (\Psi^{\ast}\nabla\Psi\right )\,d^3\textbf{r}=\iint\Psi^{\ast}\nabla\Psi\cdot d\textbf{S},</math> | |||
<math> | |||
as well as the condition, <math>\lim_{r \to \infty}\Psi^{\ast}\nabla\Psi=0,</math> we obtain | |||
<math> | |||
<math>\left\langle E\right\rangle=\int W\,d^3\textbf{r}=\int\left (\frac{\hbar^2}{2m}\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right )d^3\textbf{r}</math> | |||
<math>\textbf{ | |||
(2) We first find the time derivative of energy density: | |||
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0</math> | <math>\frac{\partial W}{\partial t}=\frac{\partial}{\partial t}\left (\nabla\Psi^{\ast}\cdot\nabla\Psi+\Psi^{\ast}V\Psi\right ) | ||
=\frac{\hbar^2}{2m}\left (\nabla\Psi^{\ast}\cdot\nabla\frac{\partial\Psi}{\partial t} + \nabla\frac{\partial\Psi^{\ast}}{\partial t}\cdot\nabla\Psi\right ) + \frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math> | |||
<math>=\frac{\hbar^2}{2m}\left [\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\psi}{\partial t} + \frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right) - \left (\frac{\partial\Psi}{\partial t}\nabla^2\Psi^{\ast}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla^2\Psi\right )\right ]+\frac{\partial\Psi^{\ast}}{\partial t}V\Psi+\Psi^{\ast}V\frac{\partial\Psi}{\partial t}</math> | |||
<math>=\frac{\hbar^2}{2m}\nabla\cdot\left (\nabla\Psi^{\ast}\frac{\partial\Psi}{\partial t}+\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi\right)+\frac{\partial\Psi^{\ast}}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi\right )+\frac{\partial\Psi}{\partial t}\left (-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+\nabla\Psi^{\ast}\right )</math>, | |||
Using the Schrödinger equation, | |||
<math>i\hbar\frac{\partial\Psi}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi+V\Psi,</math> | |||
and its complex conjugate, | |||
<math>-i\hbar\frac{\partial\Psi^{\ast}}{\partial t}=-\frac{\hbar^2}{2m}\nabla^2\Psi^{\ast}+V\Psi^{\ast},</math> | |||
and defining the energy flux density as <math>\textbf{S}=-\frac{\hbar^2}{2m}\left(\frac{\partial\Psi^{\ast}}{\partial t}\nabla\Psi + \frac{\partial\Psi}{\partial t}\nabla\Psi^{\ast}\right ),</math> | |||
We obtain | |||
<math>\frac{\partial W}{\partial t}=-\nabla\cdot\textbf{S}+\frac{\partial\Psi^{\ast}}{\partial t}\frac{\partial\Psi}{\partial t}-\frac{\partial\Psi}{\partial t}\frac{\partial\Psi^{\ast}}{\partial t}=-\nabla\cdot\textbf{S},</math> | |||
or, rearranging, | |||
<math>\frac{\partial W}{\partial t}+\nabla \cdot \textbf{S}=0.</math> | |||
Back to [[Relation Between the Wave Function and Probability Density#Problems|Relation Between the Wave Function and Probability Density]] |
Latest revision as of 13:21, 18 January 2014
(1) The energy operator in three dimensions is: so the average energy in state is:
Using the identity, we obtain
If we apply Gauss' Theorem to the first term,
as well as the condition, we obtain
(2) We first find the time derivative of energy density:
,
Using the Schrödinger equation,
and its complex conjugate,
and defining the energy flux density as
We obtain
or, rearranging,
Back to Relation Between the Wave Function and Probability Density