Commutation Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
m (User talk:ChorChan moved to Commutation Problem: Problem should be moved from a user talk page to a more specific page.)
No edit summary
 
(2 intermediate revisions by the same user not shown)
Line 1: Line 1:
Let <math> f(x) \!</math> be a differentiable function, using
<math>[\hat{x},\hat{p}_{x}]=i\hbar</math>, prove:
(a) <math>[\hat{x},\hat{p}^{2}_{x}f(\hat{x})  ]=2i\hbar \hat{p}_{x}
f(\hat{x})</math>
(b)
<math>[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=i\hbar[f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]</math>
(c) <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})]=-i\hbar
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx}</math>
(d) <math>[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=-i\hbar
\hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}</math>
sol:
(a)
(a)


Line 96: Line 78:


</math>
</math>
Back to [[Commutation Relations and Simultaneous Eigenvalues#Problems|Commutation Relations and Simultaneous Eigenvalues]]

Latest revision as of 13:25, 18 January 2014

(a)


(b)


(c)

Now, consider

So

and so



(d)

Back to Commutation Relations and Simultaneous Eigenvalues