|
|
(2 intermediate revisions by the same user not shown) |
Line 1: |
Line 1: |
| Let <math> f(x) \!</math> be a differentiable function, using
| |
| <math>[\hat{x},\hat{p}_{x}]=i\hbar</math>, prove:
| |
|
| |
| (a) <math>[\hat{x},\hat{p}^{2}_{x}f(\hat{x}) ]=2i\hbar \hat{p}_{x}
| |
| f(\hat{x})</math>
| |
|
| |
| (b)
| |
| <math>[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=i\hbar[f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]</math>
| |
|
| |
| (c) <math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})]=-i\hbar
| |
| \hat{p}^{2}_{x}\frac{df(\hat{x})}{dx}</math>
| |
|
| |
| (d) <math>[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}]=-i\hbar
| |
| \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}</math>
| |
|
| |
|
| |
| sol:
| |
|
| |
| (a) | | (a) |
|
| |
|
Line 96: |
Line 78: |
|
| |
|
| </math> | | </math> |
| | |
| | Back to [[Commutation Relations and Simultaneous Eigenvalues#Problems|Commutation Relations and Simultaneous Eigenvalues]] |
Latest revision as of 13:25, 18 January 2014
(a)
(b)
(c)
Now, consider
So
and so
(d)
Back to Commutation Relations and Simultaneous Eigenvalues