Commutation Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove: (a) <math>[x,p^{2}_{x}f(x) ]=2i\hbar p_{x} f(x)</math> (b) <math>[x,p_{x}f(x)p_{x}]=i...)
 
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 1: Line 1:
Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove:
(a)
 
<math>
\begin{align}
 
&[\hat{x},\hat{p}^{2}_{x}f(\hat{x})] \\
&=[\hat{x},\hat{p}_{x}]\hat{p}_{x}f(\hat{x})+\hat{p}_{x}[\hat{x},\hat{p}_{x}f(\hat{x})] \\
&=i\hbar \hat{p}_{x}f(\hat{x}) + \hat{p}^{2}_{x}[\hat{x},f(\hat{x})] + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) \\
&=i\hbar \hat{p}_{x}f(\hat{x})+ i\hbar \hat{p}_{x}f(\hat{x}) \\
&=2i\hbar \hat{p}_{x}f(\hat{x})
\end{align}
 
</math>
 
 
 
(b)
 
<math>
\begin{align}
 
&[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\
&=[\hat{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x}+\hat{p}_{x}[\hat{x},f(\hat{x})\hat{p}_{x}] \\
&=i\hbar f(\hat{x})\hat{p}_{x} + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) + \hat{p}_{x}[\hat{x},f(\hat{x})]\hat{p}_{x} \\
&=i\hbar [f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})]
\end{align}


(a) <math>[x,p^{2}_{x}f(x)  ]=2i\hbar p_{x} f(x)</math>
</math>


(b) <math>[x,p_{x}f(x)p_{x}]=i\hbar[f(x)p_{x}+p_{x}f(x)]</math>


(c) <math>[p_{x},p^{2}_{x}f(x)]=-i\hbar p^{2}_{x}\frac{df}{dx}</math>


(d) <math>[p_{x},p_{x}f(x)p_{x}]=-i\hbar p_{x}\frac{df}{dx}p_{x}</math>
(c)


<math>
\begin{align}


sol:
&[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] \\
&=[\hat{p}_{x},\hat{p}^{2}_{x}]f(\hat{x})+\hat{p}^{2}_{x}[\hat{p}_{x},f(\hat{x})] \\
&= \hat{p}^{2}_{x} [\hat{p}_{x},f(\hat{x})]
\end{align}
</math>


(a)
Now, consider


<math>
<math>
\begin{align}
\begin{align}


&[x,p^{2}_{x}f(x)] \\
&[\hat{p}_{x},f(\hat{x})]\psi(x) \\
&=[x,p_{x}]p_{x}f(x)+p_{x}[x,p_{x}f(x)] \\
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\
&=i\hbar p_{x}f(x) + p^{2}_{x}[x,f(x)] + p_{x}[x,p_{x}]f(x) \\
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx}  \\
&=i\hbar p_{x}f(x)+ i\hbar p_{x}f(x) \\
&=-i\hbar \frac{df}{dx}\psi(x)
&=2i\hbar p_{x}f(x)
\end{align}
\end{align}
</math>
So


<math>[\hat{p}_{x},f(\hat{x})] =-i\hbar \frac{df(\hat{x})}{dx}
</math>
</math>


and so
<math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] =-i\hbar
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx} </math>




(b)
 
 
(d)


<math>
<math>
\begin{align}
\begin{align}


&[x,p_{x}f(x)p_{x}] \\
&[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\
&=[x,p_{x}]f(x)p_{x}+p_{x}[x,f(x)p_{x}] \\
&=\hat{p}_{x}f(\hat{x})[\hat{p}_{x},\hat{p}_{x}]+[\hat{p}_{x},\hat{p}_{x}f(\hat{x})]\hat{p}_{x} \\
&=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\
&=\hat{p}_{x}[\hat{p}_{x},f(\hat{x})]\hat{p}_{x}+[\hat{p}_{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x} \\
&=i\hbar [f(x)p_{x}+p_{x}f(x)]
&=-i\hbar \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x}
\end{align}
\end{align}


</math>
</math>
Back to [[Commutation Relations and Simultaneous Eigenvalues#Problems|Commutation Relations and Simultaneous Eigenvalues]]

Latest revision as of 13:25, 18 January 2014

(a)


(b)


(c)

Now, consider

So

and so



(d)

Back to Commutation Relations and Simultaneous Eigenvalues