Commutation Problem: Difference between revisions
Jump to navigation
Jump to search
(New page: Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove: (a) <math>[x,p^{2}_{x}f(x) ]=2i\hbar p_{x} f(x)</math> (b) <math>[x,p_{x}f(x)p_{x}]=i...) |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
(a) | |||
<math> | |||
\begin{align} | |||
&[\hat{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | |||
&=[\hat{x},\hat{p}_{x}]\hat{p}_{x}f(\hat{x})+\hat{p}_{x}[\hat{x},\hat{p}_{x}f(\hat{x})] \\ | |||
&=i\hbar \hat{p}_{x}f(\hat{x}) + \hat{p}^{2}_{x}[\hat{x},f(\hat{x})] + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) \\ | |||
&=i\hbar \hat{p}_{x}f(\hat{x})+ i\hbar \hat{p}_{x}f(\hat{x}) \\ | |||
&=2i\hbar \hat{p}_{x}f(\hat{x}) | |||
\end{align} | |||
</math> | |||
(b) | |||
<math> | |||
\begin{align} | |||
&[\hat{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | |||
&=[\hat{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x}+\hat{p}_{x}[\hat{x},f(\hat{x})\hat{p}_{x}] \\ | |||
&=i\hbar f(\hat{x})\hat{p}_{x} + \hat{p}_{x}[\hat{x},\hat{p}_{x}]f(\hat{x}) + \hat{p}_{x}[\hat{x},f(\hat{x})]\hat{p}_{x} \\ | |||
&=i\hbar [f(\hat{x})\hat{p}_{x}+\hat{p}_{x}f(\hat{x})] | |||
\end{align} | |||
</math> | |||
( | (c) | ||
<math> | |||
\begin{align} | |||
&[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] \\ | |||
&=[\hat{p}_{x},\hat{p}^{2}_{x}]f(\hat{x})+\hat{p}^{2}_{x}[\hat{p}_{x},f(\hat{x})] \\ | |||
&= \hat{p}^{2}_{x} [\hat{p}_{x},f(\hat{x})] | |||
\end{align} | |||
</math> | |||
Now, consider | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
&[ | &[\hat{p}_{x},f(\hat{x})]\psi(x) \\ | ||
&= | &=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
&=i\hbar | &=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx} \\ | ||
&=-i\hbar \frac{df}{dx}\psi(x) | |||
&= | |||
\end{align} | \end{align} | ||
</math> | |||
So | |||
<math>[\hat{p}_{x},f(\hat{x})] =-i\hbar \frac{df(\hat{x})}{dx} | |||
</math> | </math> | ||
and so | |||
<math>[\hat{p}_{x},\hat{p}^{2}_{x}f(\hat{x})] =-i\hbar | |||
\hat{p}^{2}_{x}\frac{df(\hat{x})}{dx} </math> | |||
( | |||
(d) | |||
<math> | <math> | ||
\begin{align} | \begin{align} | ||
&[x, | &[\hat{p}_{x},\hat{p}_{x}f(\hat{x})\hat{p}_{x}] \\ | ||
&= | &=\hat{p}_{x}f(\hat{x})[\hat{p}_{x},\hat{p}_{x}]+[\hat{p}_{x},\hat{p}_{x}f(\hat{x})]\hat{p}_{x} \\ | ||
&= | &=\hat{p}_{x}[\hat{p}_{x},f(\hat{x})]\hat{p}_{x}+[\hat{p}_{x},\hat{p}_{x}]f(\hat{x})\hat{p}_{x} \\ | ||
&=i\hbar | &=-i\hbar \hat{p}_{x}\frac{df(\hat{x})}{dx}\hat{p}_{x} | ||
\end{align} | \end{align} | ||
</math> | </math> | ||
Back to [[Commutation Relations and Simultaneous Eigenvalues#Problems|Commutation Relations and Simultaneous Eigenvalues]] |