Phy5645/Problem 1D sample: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(15 intermediate revisions by 4 users not shown)
Line 1: Line 1:
(Submitted by team 1. Based on problem 3.19 in Schaum's Theory and problems of Quantum Mechanics)
The Schrödinger equation takes the form,


Consider a particle of mass m in a three dimensional potential:
:<math>-\frac{\hbar^2}{2m}\frac{d^2\psi(x,y,z)}{dx^2}+\left(X(x)+Y(y)+Z(z)\right)\psi(x,y,z)=E\psi(x,y,z).</math>
<math>V(x,y,z)=X(x) + Y(y) + Z(z)</math>


Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem.
Let us assume that <math>\psi</math> has the form, <math>\psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z).\!</math>  Then


______________________________________________________________________________________________________________________________________
:<math>
\begin{align}
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
+ \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) &= E\Phi(x) \Delta(y) \Omega (z).
\end{align}
</math>


The Schroedinger's equation takes the form:
<math>-\frac{\hbar^2}{2m}\frac{d^2\Psi(x,y,z)}{dx^2}+(X(x)+Y(y)+Z(z))\Psi(x,y,z)=E\Psi(x,y,z)</math>


Dividing by <math>\psi(x,y,z),\!</math> we obtain


:<math>
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x)
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y)
-\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z)
= E 
</math>


Assuming that <math>\Psi</math> can be write like:
We may now separate the left-hand side into three parts, each depending on only one of the three coordinates <math>x,\,y,</math> and <math>z.\!</math>  Each of these parts must be equal to a constant.  Therefore,
<math>\Psi(x,y,z)=\Phi(x) \Delta(y) \Omega (z)  </math>
:<math>
-\frac{\hbar^2}{2m}\frac{d^2\Phi(x)}{dx^2} + X(x)\Phi(x) = E_x\Phi(x)  </math>


:<math>
-\frac{\hbar^2}{2m}\frac{d^2\Delta(y)}{dy^2} + Y(y)\Delta(y) = E_y\Delta(y)  </math>


So,
:<math>
-\frac{\hbar^2}{2m}\frac{d^2\Omega(z)}{dz^2} + Z(z)\Omega(z) = E_z\Omega(z), </math>


<math>-\frac{\hbar^2}{2m}[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z)  +  \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2}  ]  + [X(x)+Y(y)+Z(z)]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z)  </math>
where <math> E_x,\!</math>, <math> E_y,\!</math> and <math> E_z\!</math> are constants and <math> E = E_x+E_y+E_z.\!</math>


Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy <math>E</math> is the sum of the energies <math> E_x,\!</math> <math>E_y,\!</math> and <math>E_z\!</math> in each dimension.


Dividing by <math>\Psi(x,y,z) </math>
Back to [[Motion in One Dimension#Problem|Motion in One Dimension]]
 
<math>-\frac{\hbar^2}{2m}\frac{1}{\Phi(x)}  \frac{d^2\Phi(x)}{dx^2}    + X(x)   
      -\frac{\hbar^2}{2m}\frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2}  + Y(y)
      -\frac{\hbar^2}{2m}\frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2}  + Z(z)      = E  </math>
 
 
Perfectly we can separate the right hand side in three parts, where only one depends of x, only one of y and only one of z. Then each of these parts must be equal to a constant. So:
 
 
<math>-\frac{\hbar^2}{2m}\frac{1}{\Phi(x)}  \frac{d^2\Phi(x)}{dx^2}    + X(x)    = Ex  </math>
 
 
<math>-\frac{\hbar^2}{2m}\frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2}  + Y(y)    = Ey  </math>
 
 
<math>-\frac{\hbar^2}{2m}\frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2}  + Z(z)    = Ez  </math>
 
 
Ex, Ey and Ez are constant where: <math>  E = Ex+Ey+Ez  </math>
 
 
Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy E is the sum of the energies Ex, Ey and Ez in each dimension.

Latest revision as of 13:28, 18 January 2014

The Schrödinger equation takes the form,

Let us assume that has the form, Then


Dividing by we obtain

We may now separate the left-hand side into three parts, each depending on only one of the three coordinates and Each of these parts must be equal to a constant. Therefore,

where , and are constants and

Hence, the three-dimensional problem has been divided into three one-dimensional problems where the total energy is the sum of the energies and in each dimension.

Back to Motion in One Dimension