Phy5645/HydrogenAtomProblem: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(3 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
'''(a)''' | '''(a)''' To find <math>N,\!</math> we simply take the volume integral of <math>\psi\psi^\ast.</math> Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes. | ||
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and | |||
phi dependence in the integral vanishes | |||
<math>\ | <math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty} | ||
N^{2}r^{2}sin^{2} | N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math> | ||
<math>\ | <math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} \sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr=24a^5N^2</math> | ||
\theta | |||
<math> | Therefore, <math>N = \frac{1}{\sqrt{24a^5}}.</math> | ||
'''(b)''' | '''(b)''' | ||
<math>\psi\psi | <math>\psi\psi^\ast(r,\theta,\phi) = \frac{1}{24a^5}r^{2}\sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-r/a}</math> | ||
sin^{2} | |||
<math>=\left(\frac{1}{24a^5}\right)a^2\sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} = | |||
\frac{\pi e^{-1}}{128a^3} = \frac{0.009}{a^3}</math> | |||
<math>\ | '''(c)''' We simply integrate <math>\psi\psi^\ast\!</math> over the spherical shell given by varying <math>\phi\!</math> and <math>\theta\!</math> with <math>r = 2a.\!</math> The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is | ||
<math> | |||
<math>\ | <math>\frac{dP}{dr}=\left(\frac{1}{24{a}^5}\right)(2a)^{4}e^{-2} = \frac{2e^{-2}}{3a} = \frac{0.0902}{a}.</math> | ||
'''(d)''' | '''(d)''' We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are <math>l=1\!</math> and <math>m=-1.\!</math> Therefore, | ||
<math>\langle\hat{\mathbf{L}}^2\rangle=2\hbar^{2}</math> | |||
and | |||
<math>\hat | <math>\langle\hat{L}_z\rangle=-\hbar.</math> | ||
Back to [[Hydrogen Atom]] | Back to [[Hydrogen Atom#Problems|Hydrogen Atom]] |
Latest revision as of 13:43, 18 January 2014
(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.
Therefore,
(b)
(c) We simply integrate over the spherical shell given by varying and with The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is
(d) We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are and Therefore,
and
Back to Hydrogen Atom