Phy5645/HydrogenAtomProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
'''(a)''' Take the volume integral of  <math>\psi\psi*</math>. <math>Y_{1,-1}\left(\theta, \phi  
'''(a)''' To find <math>N,\!</math> we simply take the volume integral of  <math>\psi\psi^\ast.</math>  Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes.
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the  
phi dependence in the integral vanishes :


<math>\int _{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}  
<math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}  
N^{2}r^{2}sin^{2}(\theta) \frac{3}{8\pi}e^{-\frac{r}
N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math>
{a_o}}r^{2}sin(\theta)drd\theta d\phi</math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \int_{0}^{\pi} sin^{3}(\theta)d
<math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} \sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr=24a^5N^2</math>
\theta \int_{0}^{2\pi} e^{-2i\phi}d\phi \int_{ 0}^{\infty}r^{4}e^{-
\frac{r}{a_o}}dr = 1 </math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math>
Therefore, <math>N = \frac{1}{\sqrt{24a^5}}.</math>
 
Therefore <math>N^{2}\left(24a^{5}\right) = 1 </math> so <math>N = \sqrt\frac{1}{24a^5}</math>


'''(b)'''
'''(b)'''


<math>\psi\psi* = N^{2}r^{2}sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-
<math>\psi\psi^\ast(r,\theta,\phi) = \frac{1}{24a^5}r^{2}\sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-r/a}</math>
\frac{r}{a_o}}</math>
 
<math>\Longrightarrow \left(\frac{1}{24{a_o}^5}\right) {a_o}^2
sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =
\left(\frac{\pi e^{-1}}{128{a_o}^3}\right) = \frac{0.009}{{a_o}^3}</math>
 
'''(c)'''


Average over <math>\phi</math> and <math>\theta</math> at <math>r = 2a_{o}</math>
<math>=\left(\frac{1}{24a^5}\right)a^2\sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =
\frac{\pi e^{-1}}{128a^3} = \frac{0.009}{a^3}</math>


<math>\left| Y_{1,-1}\right|^2 = \left(\frac{3}{8\pi}\right)sin^{2}(\theta)
'''(c)''' We simply integrate <math>\psi\psi^\ast\!</math> over the spherical shell given by varying <math>\phi\!</math> and <math>\theta\!</math> with <math>r = 2a.\!</math> The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is
= \left(\frac{3}{16\pi}\right)</math>
<math>\psi\psi* = N^{2}r^{2}e^{-\frac{r}{a}}s \left| Y_{1,-1}\right|^{2} </math>


<math>\Longrightarrow \left(\frac{1}{24{a}^5}\right)(2a)^{2}e^{-\frac{2a}
<math>\frac{dP}{dr}=\left(\frac{1}{24{a}^5}\right)(2a)^{4}e^{-2} = \frac{2e^{-2}}{3a} = \frac{0.0902}{a}.</math>
{a}}\left(\frac{3}{16\pi}\right) = \left(\frac{1}{32\pi a}
\right)e^{-2} = \frac{0.0013}{a}</math>


'''(d)'''
'''(d)''' We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are <math>l=1\!</math> and <math>m=-1.\!</math>  Therefore,


l=1, m = -1  are the l and m of the eigenstate <math>Y_{1,-1}(\theta, \phi)</math>
<math>\langle\hat{\mathbf{L}}^2\rangle=2\hbar^{2}</math>


<math>\hat L^2 = \hbar^{2} l (l +1) = 2\hbar^{2} </math>
and


<math>\hat L_z = \hbar m = -\hbar </math>
<math>\langle\hat{L}_z\rangle=-\hbar.</math>


Back to [[Hydrogen Atom]]
Back to [[Hydrogen Atom#Problems|Hydrogen Atom]]

Latest revision as of 13:43, 18 January 2014

(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.

Therefore,

(b)

(c) We simply integrate over the spherical shell given by varying and with The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is

(d) We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are and Therefore,

and

Back to Hydrogen Atom