Phy5645/HydrogenAtomProblem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(7 intermediate revisions by the same user not shown)
Line 1: Line 1:
(Submitted by Team 6)
'''(a)''' To find <math>N,\!</math> we simply take the volume integral of  <math>\psi\psi^\ast.</math>  Note that <math>Y_1^{-1}\left(\theta, \phi \right) = \sqrt{\frac{3}{8\pi}}\sin(\theta)e^{-i\phi},</math> and thus the <math>\phi\!</math> dependence in the integral vanishes.


This problem taken from ''Quantum Mechanics: Concepts and
<math>1=\frac{3}{8\pi}\int_{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}
Applications'' by Nouredine Zettili: Exercise 6.3
N^{2}r^{2}\sin^{2}{\theta}e^{-r/a}r^{2}\sin{\theta}\,dr\,d\theta\,d\phi</math>


'''An electron in a hydrogen atom is in the energy eigenstate''' <math>
<math>=\tfrac{3}{4}N^2 \int_{0}^{\pi} \sin^{3}{\theta}\,d\theta \int_{0}^{\infty}r^{4}e^{-r/a}\,dr=24a^5N^2</math>
\psi_{2,1,1} \left(r, \theta, \phi \right) = Nre^{-\frac{r}
{2a_o}}Y_{1,-1}\left(\theta, \phi \right)</math>. '''(a) Find the normalization constant, N.'''


Take the volume integral of  <math>\psi\psi*</math>.  <math>Y_{1,-1}\left(\theta, \phi
Therefore, <math>N = \frac{1}{\sqrt{24a^5}}.</math>
\right) = \sqrt{\frac{3}{8\pi}}sin(\theta)e^{-i\phi} </math> and as such the
phi dependence in the integral vanishes :


<math>\int _{\phi= 0}^{2\pi} \int_{\theta = 0}^{\pi} \int_{r=0}^{\infty}
'''(b)'''
N^{2}r^{2}sin^{2}(\theta) \frac{3}{8\pi}e^{-\frac{r}
{a_o}}r^{2}sin(\theta)drd\theta d\phi</math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \int_{0}^{\pi} sin^{3}(\theta)d
<math>\psi\psi^\ast(r,\theta,\phi) = \frac{1}{24a^5}r^{2}\sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-r/a}</math>
\theta \int_{0}^{2\pi} e^{-2i\phi}d\phi \int_{ 0}^{\infty}r^{4}e^{-
\frac{r}{a_o}}dr = 1 </math>


<math>\Longrightarrow \frac{3N^2}{8\pi} \frac{4}{3}(2\pi)(24a^5) = 1</math>
<math>=\left(\frac{1}{24a^5}\right)a^2\sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =  
\frac{\pi e^{-1}}{128a^3} = \frac{0.009}{a^3}</math>


Therefore <math>N^{2}\left(24a^{5}\right) = 1 </math> so <math>N = \sqrt\frac{1}{24a^5}</math>
'''(c)''' We simply integrate <math>\psi\psi^\ast\!</math> over the spherical shell given by varying <math>\phi\!</math> and <math>\theta\!</math> with <math>r = 2a.\!</math> The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is


'''(b)What is the probability per unit volume of finding the electron at''' <math> r = a_{o}\theta = 45^{\circ}, \phi = 60^{\circ}? </math>
<math>\frac{dP}{dr}=\left(\frac{1}{24{a}^5}\right)(2a)^{4}e^{-2} = \frac{2e^{-2}}{3a} = \frac{0.0902}{a}.</math>


<math>\psi\psi* = N^{2}r^{2}sin^{2}(\theta)\left(\frac{3}{8\pi}\right)e^{-
'''(d)''' We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are <math>l=1\!</math> and <math>m=-1.\!</math> Therefore,
\frac{r}{a_o}}</math>


<math>\Longrightarrow \left(\frac{1}{24{a_o}^5}\right) {a_o}^2
<math>\langle\hat{\mathbf{L}}^2\rangle=2\hbar^{2}</math>
sin^{2}\left(\frac{\pi}{4}\right)\left(\frac{3}{8\pi}\right)e^{-1} =  
\left(\frac{\pi e^{-1}}{128{a_o}^3}\right) = \frac{0.009}{{a_o}^3}</math>


and


'''(c) What is the probability per unit radial interval (dr) of finding the electron at''' <math> a =a_{o} ? </math>
<math>\langle\hat{L}_z\rangle=-\hbar.</math>


Average over <math>\phi</math> and <math>\theta</math> at <math>r = 2a_{o}</math>
Back to [[Hydrogen Atom#Problems|Hydrogen Atom]]
 
<math>\left| Y_{1,-1}\right|^2 = \left(\frac{3}{8\pi}\right)sin^{2}(\theta)
= \left(\frac{3}{16\pi}\right)</math>
<math>\psi\psi* =  N^{2}r^{2}e^{-\frac{r}{a}}s \left| Y_{1,-1}\right|^{2} </math>
 
<math>\Longrightarrow \left(\frac{1}{24{a}^5}\right)(2a)^{2}e^{-\frac{2a}
{a}}\left(\frac{3}{16\pi}\right) = \left(\frac{1}{32\pi a}
\right)e^{-2} = \frac{0.0013}{a}</math>
 
'''(d) If''' <math> \mathbf{ \hat L^2}</math> '''and''' <math>\mathbf{ \hat L_{z}}</math> '''are made, what will the results be?'''
 
l=1, m = -1  are the l and m of the eigenstate <math>Y_{1,-1}(\theta, \phi)</math>
 
<math>\hat L^2 = \hbar^{2} l (l +1) = 2\hbar^{2} </math>
 
<math>\hat L_z = \hbar m = -\hbar </math>

Latest revision as of 13:43, 18 January 2014

(a) To find we simply take the volume integral of Note that and thus the dependence in the integral vanishes.

Therefore,

(b)

(c) We simply integrate over the spherical shell given by varying and with The spherical harmonics, as we have defined them, are already normalized, so that the probability per unit radial coordinate is

(d) We may read the orbital and magnetic quantum numbers directly off of the spherical harmonic, they are and Therefore,

and

Back to Hydrogen Atom