Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
Line 47: Line 47:
Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.
Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.


Back to [[WKB in Spherical Coordinates]]
Back to [[WKB in Spherical Coordinates#Problem|WKB in Spherical Coordinates]]

Latest revision as of 13:45, 18 January 2014

The WKB approximation is given by

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{r_1}^{r_2} p(r)\,dr=(n+\tfrac{1}{2})\pi \hbar,}

where

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p(r)=\sqrt {2m(E-V_{\text{eff}}(r))} =\sqrt {2m\left (E+\frac{e^{2}}{r}-{\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mr^{2}}}\right )}.}

We may rewrite the above as

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{\hbar^{2}(l+\tfrac{1}{2})^2}{2mEr^{2}}+\frac{e^{2}}{Er}}\,dr=(n+\tfrac{1}{2})\pi \hbar,}

or, making the substitution,

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=-\frac{\hbar^{2}(l+\tfrac{1}{2})}{2mE}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=\frac{e^{2}}{E},}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt{2mE}\int_{r_1}^{r_2}\sqrt{1-\frac{V}{r}+\frac{T}{r^{2}}}\,dr=(n+\tfrac{1}{2})\pi \hbar.}

Using the fact that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)\!} and that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \int_{r_1}^{r_2}\sqrt{{\frac{(x-r_1)(x-r_2)}{x^{2}}}}\,dx=\frac{\pi }{2}(\sqrt {r_2} -\sqrt {r_1} )^{2},}

we obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi}{2}\sqrt {2mE}(\sqrt {r_{2}} -\sqrt {r_{1}} )^{2}=(n+\tfrac{1}{2})\pi \hbar.}

We now observe that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r^{2}-Vr+T=(r_{1}-r)(r_{2}-r)=r^{2}-(r_{1}+r_{2})r+r_{1}r_{2},\!} so that

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V=r_{1}+r_{2}\!} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T=r_{1}r_{2}.\!}

We thus obtain

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\pi }{2}\sqrt {2mE}(V-2\sqrt {T} )=(n+\tfrac{1}{2})\pi \hbar,}

or

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sqrt {2mE} \left ({-\frac{e^{2}}{E}-2\sqrt {-\frac{\hbar ^{2}(l+\tfrac{1}{2})^2}{2mE}} } \right )=(n+\tfrac{1}{2})\pi \hbar.}

This equation simplifies to

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -e^{2}\sqrt {-\frac{2m}{E}} -(2\ell+1)\hbar =(2n+1)\hbar.}

We may now easily solve for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E,\!} obtaining

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=-\frac{me^{4}}{2\hbar ^{2}(n+\ell+1)^{2}}.}

Note that this is exactly the spectrum that we would obtain from an exact solution of the Coulomb problem.

Back to WKB in Spherical Coordinates