Exponential Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
If the potential <math> V \!</math> is spherical symmetric we can use the equation:
The potential <math> V \!</math> is spherically symmetric, so that


<math> f_{\text{Born}}(\theta)= -\frac{2m}{\hbar^2} \int_0^\infin dr'\,V(r') \frac{\sin(qr')}{qr'} {r'}^2.</math>


:<math> f_{born}(\theta) = - \frac{2m}{\hbar^2} \int_0^\infin dr' V(r') \frac{\sin(qr')}{qr'} {r'}^2 </math>
Substituting in the given potential, we obtain


<math> f_{\text{Born}}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin dr'\, r' \sin(qr') e^{-r'/a}. </math>


So,
Integrating by parts, we obtain


: <math> f_{born}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin r' \sin(qr') e^{-\frac{r'}{a}} dr' </math>
<math>  
 
 
Solving this integral by parts,
 
 
: <math>  
\begin{align}
\begin{align}
f_{born}(\theta)  
f_{\text{Born}}(\theta)
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} \int_0^\infin \cos(qr') e^{-\frac{r'}{a}} dr'    \\
&= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\int_0^\infin dr'\,\cos(qr')e^{-r'/a} \\
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \int_0^\infin e^{iqr'} e^{-\frac{r'}{a}} dr' \right] \\
&= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left (\int_0^\infin dr'\,e^{iqr'}e^{-r'/a}\right ) \\
&= - \frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { e^{(iq - \frac{1}{a})r'} }{iq - \frac{1}{a}} \right]_{_0}^{^\infin} \\
&= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac{e^{(iq - 1/a)r'}}{iq - 1/a}\right ]_{0}^{\infin} \\
&= -\frac{2mV_0}{\hbar^2 q} \frac{\partial}{\partial q} Re\left[ \frac { 1 }{\frac{1}{a} + iq }\right]
&= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac {1}{1/a + iq}\right ] \\
\end{align}
&= \frac{4mV_0a^3}{\hbar^2}\left (\frac{1}{1+q^2a^2}\right )^2.
</math>
\end{align}</math>
 
 
 
: <math> f_{born}(\theta) = \frac{4mV_0}{\hbar^2 a} (\frac{1}{ \frac{1}{a^2} +q^2 })^2 </math>
 
 
So, the differential cross section,


The differential cross section is therefore


:<math> \frac{d\sigma}{d \theta}   = \left|f_{born}(\theta) \right|^2   =   \frac{16m^2V_0^2}{\hbar^4 a^2} \left(\frac{1}{ \frac{1}{a^2} +q^2 }\right)^4
<math> \frac{d\sigma}{d\theta}=\left|f_{\text{Born}}(\theta) \right|^2=\frac{16m^2V_0^2a^6}{\hbar^4} \left(\frac{1}{1+q^2a^2}\right)^4.</math>
</math>


Back to [[Born Approximation and Examples of Cross-Section Calculations]]
Back to [[Differential Cross Section and the Green's Function Formulation of Scattering#Problems|Differential Cross Section and the Green's Function Formulation of Scattering]]

Latest revision as of 13:48, 18 January 2014

The potential is spherically symmetric, so that

Substituting in the given potential, we obtain

Integrating by parts, we obtain

The differential cross section is therefore

Back to Differential Cross Section and the Green's Function Formulation of Scattering