Exponential Potential Born Approximation: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
(6 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
The potential <math> V \!</math> is spherically symmetric, so that | |||
<math> f_{\text{Born}}(\theta)= -\frac{2m}{\hbar^2} \int_0^\infin dr'\,V(r') \frac{\sin(qr')}{qr'} {r'}^2.</math> | |||
Substituting in the given potential, we obtain | |||
<math> f_{\text{Born}}(\theta) = - \frac{2mV_0}{\hbar^2 q} \int_0^\infin dr'\, r' \sin(qr') e^{-r'/a}. </math> | |||
Integrating by parts, we obtain | |||
<math> | |||
\begin{align} | \begin{align} | ||
f_{ | f_{\text{Born}}(\theta) | ||
&= \frac{ | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\int_0^\infin dr'\,\cos(qr')e^{-r'/a} \\ | ||
&= \frac{ | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left (\int_0^\infin dr'\,e^{iqr'}e^{-r'/a}\right ) \\ | ||
&= \frac{ | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac{e^{(iq - 1/a)r'}}{iq - 1/a}\right ]_{0}^{\infin} \\ | ||
&= \frac{ | &= -\frac{2mV_0}{\hbar^2 q}\frac{\partial}{\partial q}\Re e\left [\frac {1}{1/a + iq}\right ] \\ | ||
&= \frac{4mV_0a^3}{\hbar^2}\left (\frac{1}{1+q^2a^2}\right )^2. | |||
\end{align}</math> | |||
The differential cross section is therefore | |||
<math> \frac{d\sigma}{d\theta}=\left|f_{\text{Born}}(\theta) \right|^2=\frac{16m^2V_0^2a^6}{\hbar^4} \left(\frac{1}{1+q^2a^2}\right)^4.</math> | |||
Back to [[Differential Cross Section and the Green's Function Formulation of Scattering#Problems|Differential Cross Section and the Green's Function Formulation of Scattering]] |
Latest revision as of 13:48, 18 January 2014
The potential is spherically symmetric, so that
Substituting in the given potential, we obtain
Integrating by parts, we obtain
The differential cross section is therefore
Back to Differential Cross Section and the Green's Function Formulation of Scattering