Delta Potential Born Approximation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
In Born approximation,  
In the Born approximation, the scattering amplitude is


<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int V(r')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'</math>
<math>f_{\text{Born}}(\theta)=-\frac{m}{2\pi\hbar^2}\int d^3\mathbf{r'}\,V(\mathbf{r'})e^{-i\mathbf{q}\cdot\mathbf{r}'},</math>


where <math>\mathbf{q}=\mathbf{k}'-\mathbf{k}</math> with <math>\mathbf{k}</math> and <math>\mathbf{k}'</math> are the wave vectors of the incident and scattered waves, respectively. Then
where <math>\mathbf{q}=\mathbf{k}'-\mathbf{k}</math> and <math>\mathbf{k}</math> and <math>\mathbf{k}'</math> are the wave vectors of the incident and scattered waves, respectively. Substituting in the delta function potential, we get


<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int g\delta^3(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}d^3r'=-\frac{mg}{2\pi\hbar^2}</math>
<math>f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int d^3\mathbf{r'}\,g\delta^3(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}=-\frac{mg}{2\pi\hbar^2},</math>


and the differential cross section is  
and therefore the differential cross section is  


<math>\sigma(\theta)=|f_B(\theta)|^2=\frac{m^2 g^2}{4\pi^2\hbar^4}</math>.
<math>\frac{d\sigma}{d\Omega}=|f_{\text{Born}}(\theta)|^2=\frac{m^2 g^2}{4\pi^2\hbar^4}.</math>


As the distribution is isotropic, the total cross section is  
As the distribution is isotropic, the total cross section is  


<math>\sigma_t=4\pi\sigma=\frac{m^2 g^2}{\pi\hbar^4}</math>.
<math>\sigma=4\pi\sigma=\frac{m^2 g^2}{\pi\hbar^4}</math>.


Back to [[Born Approximation and Examples of Cross-Section Calculations]]
Back to [[Differential Cross Section and the Green's Function Formulation of Scattering#Problems|Differential Cross Section and the Green's Function Formulation of Scattering]]

Latest revision as of 13:48, 18 January 2014

In the Born approximation, the scattering amplitude is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_{\text{Born}}(\theta)=-\frac{m}{2\pi\hbar^2}\int d^3\mathbf{r'}\,V(\mathbf{r'})e^{-i\mathbf{q}\cdot\mathbf{r}'},}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{q}=\mathbf{k}'-\mathbf{k}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \mathbf{k}'} are the wave vectors of the incident and scattered waves, respectively. Substituting in the delta function potential, we get

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle f_B(\theta)=-\frac{m}{2\pi\hbar^2}\int d^3\mathbf{r'}\,g\delta^3(\mathbf{r}')e^{-i\mathbf{q}\cdot\mathbf{r}'}=-\frac{mg}{2\pi\hbar^2},}

and therefore the differential cross section is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{d\sigma}{d\Omega}=|f_{\text{Born}}(\theta)|^2=\frac{m^2 g^2}{4\pi^2\hbar^4}.}

As the distribution is isotropic, the total cross section is

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sigma=4\pi\sigma=\frac{m^2 g^2}{\pi\hbar^4}} .

Back to Differential Cross Section and the Green's Function Formulation of Scattering