Phy5645/Cross Section Relation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(10 intermediate revisions by the same user not shown)
Line 1: Line 1:
The differential cross section is related to the scattering amplitude through
The differential cross section is related to the scattering amplitude through


<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = |f_{k}(\theta)|^2</math>
<math>\frac{d\sigma (\theta)}{d\Omega} = |f_{k}(\theta)|^2.</math>


Since <math>| f |^2 = (Re f )^2 + (Im f )^2 \geq  (Im f )^2</math>  
Since <math>| f |^2 = (\Re e\,f )^2 + (\Im m\,f )^2 \geq  (\Im m f )^2,</math>  


therefore, <math> \frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} \geq (Im f_{k}(\theta))^{2} </math>
we obtain


On the other hand, from the optical theorem we have
<math> \frac{d\sigma (\theta)}{d\Omega} \geq (\Im m[f_{k}(\theta)])^{2}.</math>


<math> \sigma =\frac{4\pi}{k} Im f_{k}(\theta)) \leq \frac{4\pi}{k}\sqrt{\frac{\mathrm{d} \sigma (0) }{\mathrm{d} \Omega }}</math>
On the other hand, the optical theorem states that


For a central potential the scattering amplitude is
<math> \sigma =\frac{4\pi}{k} \Im m[f_{k}(0)],</math>


<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l} P_{l} (cos \theta)</math>
so that


and, in terms of this, the differential cross section is
<math>\frac{d\sigma (0)}{d\Omega}\geq \frac{k^2\sigma ^{2}}{16\pi ^{2}}.</math>


<math>\frac{\mathrm{d} \sigma (\theta)}{\mathrm{d} \Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} sin\delta _{l}sin\delta _{l^{\prime}} P_{l} (cos \theta)P_{l^{\prime}} (cos \theta)</math>
From this, it follows that <math>\sigma\leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0)}{d\Omega}}.</math>


The total cross section is
Back to [[Central Potential Scattering and Phase Shifts#Problems|Central Potential Scattering and Phase Shifts]]
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}</math>
 
Since <math> P_{l}(1)= 1</math>  we can write
 
<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l}  \right ]^2</math>
 
<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l}  + isin^2\delta _{l}  \right ]^2</math>
 
<math>\frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin\delta _{l}cos\delta _{l}\right ]^2 +\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2</math>
<math>\Rightarrow  \frac{\mathrm{d} \sigma (0)}{\mathrm{d} \Omega} \geq \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) sin^2\delta _{l}  \right ]^2 = \frac{k^2\sigma ^{2}}{16\pi ^{2}}</math>
 
Back to [[Central Potential Scattering and Phase Shifts]]

Latest revision as of 13:50, 18 January 2014

The differential cross section is related to the scattering amplitude through

Since

we obtain

On the other hand, the optical theorem states that

so that

From this, it follows that

Back to Central Potential Scattering and Phase Shifts