Phy5645/Cross Section Relation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
 
(4 intermediate revisions by the same user not shown)
Line 3: Line 3:
<math>\frac{d\sigma (\theta)}{d\Omega} = |f_{k}(\theta)|^2.</math>
<math>\frac{d\sigma (\theta)}{d\Omega} = |f_{k}(\theta)|^2.</math>


Since <math>| f |^2 = (\Re e f )^2 + (\Im m f )^2 \geq  (\Im m f )^2,</math>  
Since <math>| f |^2 = (\Re e\,f )^2 + (\Im m\,f )^2 \geq  (\Im m f )^2,</math>  


we obtain
we obtain
Line 9: Line 9:
<math> \frac{d\sigma (\theta)}{d\Omega} \geq (\Im m[f_{k}(\theta)])^{2}.</math>
<math> \frac{d\sigma (\theta)}{d\Omega} \geq (\Im m[f_{k}(\theta)])^{2}.</math>


On the other hand, from the optical theorem we have
On the other hand, the optical theorem states that


<math> \sigma =\frac{4\pi}{k} \Im m[f_{k}(\theta)].</math>
<math> \sigma =\frac{4\pi}{k} \Im m[f_{k}(0)],</math>


For a central potential, the scattering amplitude is
so that


<math>f_k(\theta) = \frac{1}{k}\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} \sin\delta _{l} P_{l} (\cos \theta),</math>
<math>\frac{d\sigma (0)}{d\Omega}\geq \frac{k^2\sigma ^{2}}{16\pi ^{2}}.</math>
 
and thus the differential cross section is
 
<math>\frac{d\sigma (\theta)}{d\Omega} = \frac{1}{k^2}\sum_{l = 0}^{\infty}\sum_{l^{\prime} = 0}^{\infty}(2l + 1)(2l^{\prime} + 1) e^{i(\delta _{l}- \delta _{l^{\prime}})} \sin\delta _{l}\sin\delta _{l'} P_{l} (\cos \theta)P_{l'} (\cos \theta)</math>
 
The total cross section is then
 
<math>\sigma = \frac{4\pi ^2}{k^2}\sum_{l = 0}^{\infty}(2l + 1) \sin^2\delta _{l}.</math>
 
Since <math> P_{l}(1)= 1\!</math> we can write
 
<math>\frac{d\sigma (0)}{d\Omega} = \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) e^{i\delta _{l}} sin\delta _{l}  \right ]^2=\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin\delta _{l}\cos\delta _{l}  + i\sin^2\delta _{l}  \right ]^2</math>
 
<math>=\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin\delta _{l}\cos\delta _{l}\right ]^2 +\frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin^2\delta _{l}  \right ]^2\geq \frac{1}{k^2}\left [\sum_{l = 0}^{\infty}(2l + 1) \sin^2\delta _{l}  \right ]^2 = \frac{k^2\sigma ^{2}}{16\pi ^{2}}.</math>


From this, it follows that <math>\sigma\leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0)}{d\Omega}}.</math>
From this, it follows that <math>\sigma\leq \frac{4\pi}{k}\sqrt{\frac{d\sigma (0)}{d\Omega}}.</math>


Back to [[Central Potential Scattering and Phase Shifts]]
Back to [[Central Potential Scattering and Phase Shifts#Problems|Central Potential Scattering and Phase Shifts]]

Latest revision as of 13:50, 18 January 2014

The differential cross section is related to the scattering amplitude through

Since

we obtain

On the other hand, the optical theorem states that

so that

From this, it follows that

Back to Central Potential Scattering and Phase Shifts