7th Week: Stellar Structure and Evolution: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 9: Line 9:
Equations of stellar structure
Equations of stellar structure


'''Pressure equilibrium'''
Pressure equilibrium: The balanced of the gravity force and the pressure gradient is known as the hydrostatic balance.
 
:<math> \frac{dP_r}{dr}=-\rho_r \frac {GM_r}{r^2} </math>
:<math> \frac{dP_r}{dr}=-\rho_r \frac {GM_r}{r^2} </math>


'''Conservation of mass'''
Conservation of mass
:<math> \frac {dM_r}{dr}= 4\pi r^2 \rho _r </math>
:<math> \frac {dM_r}{dr}= 4\pi r^2 \rho _r </math>


'''Energy generation'''
Energy generation
:<math> \frac {dL_r}{dr}=4\pi r^2 \rho _r \epsilon </math>
:<math> \frac {dL_r}{dr}=4\pi r^2 \rho _r \epsilon </math>


'''Energy transport'''
Energy transport
:<math> \frac{dT_r}{dr}=\left( 1- \frac{1}{\gamma} \right) \frac{T_r}{P_r}\frac{dP_r}{dr} </math>
:<math> \frac{dT_r}{dr}=\left( 1- \frac{1}{\gamma} \right) \frac{T_r}{P_r}\frac{dP_r}{dr} </math>


==Stellar evolution==
==Stellar evolution==

Revision as of 13:37, 18 March 2009

Stellar properties

The Hertzsprung-Russel diagram

Stellar structure

Stars of different mass and age have varying internal structures. Stellar structure models describe the internal structure of a star in detail and make detailed predictions about the luminosity, the color and the future evolution of the star.

Equations of stellar structure

Pressure equilibrium: The balanced of the gravity force and the pressure gradient is known as the hydrostatic balance.

Conservation of mass

Energy generation

Energy transport

Stellar evolution