Solution to Set 6: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 84: Line 84:


* Area <math>A = L \times W = 2.0 \times 10^{-5} m^2</math>
* Area <math>A = L \times W = 2.0 \times 10^{-5} m^2</math>
[[Image:Semiconductor.png|right|200px]]


====Determine====
====Determine====
Line 91: Line 93:
<math>\rho = R \cdot \frac {A}{\ell} \;</math>
<math>\rho = R \cdot \frac {A}{\ell} \;</math>
<math> = \frac{V}{I} \cdot \frac {A}{\ell} \;</math>
<math> = \frac{V}{I} \cdot \frac {A}{\ell} \;</math>
<math> = \frac{2V}{0.04A} \cdot \frac{2 \times 10^{-11}m^2}{0.002m} \;</math>
<math> = \frac{2V}{0.04A} \cdot \frac{2 \times 10^{-5}m^2}{0.005m} \;</math>
<math> = 5 \times 10^{-7} \Omega \cdot m \;</math>
<math> = 0.2 \Omega \cdot m \;</math>


<math>\sigma = \frac{1}{\rho} = \frac{1}{5 \times 10^{-7} \Omega \cdot m} \;</math>
<math>\sigma = \frac{1}{\rho} = \frac{1}{0.02 \Omega \cdot m} \;</math>
<math> = 2 \times 10^{6} \tfrac{S}{m} \;</math>
<math> = 5 \tfrac{S}{m} \;</math>


# Carrier density
# Carrier density
Line 104: Line 106:


<math>n = -\frac{1}{e} \cdot \frac{V_H}{I \cdot \tfrac{B}{\ell}} \;</math>
<math>n = -\frac{1}{e} \cdot \frac{V_H}{I \cdot \tfrac{B}{\ell}} \;</math>
<math> = - \frac{1}{-1.602 \times 10^{-19}C} \cdot \frac{0.015V}{\left (0.04A  \right ) \cdot \tfrac{\left (0.1T  \right )}{\left (0.002m \right )}} \;</math>
<math> = - \frac{1}{-1.602 \times 10^{-19}C} \cdot \frac{0.015V}{\left (0.04A  \right ) \cdot \tfrac{\left (0.1T  \right )}{\left (0.005m \right )}} \;</math>
<math> = 1.170 \times 10^{22} m^{-3} \;</math>  
<math> = 1.1704 \times 10^{17} m^{-3} \;</math>  


# Mobility
# Mobility

Revision as of 02:08, 9 April 2009

Problem 1.

Given

Aluminum(Al) is trivalent with

  • atomic mass amu
  • density
  • room temperature
  • mean free time between electron collisions s.

(a) Resistivity

Calculate the resistivity of aluminum(Al) at room temperature.

Ω·m

(b) Current

Wire cross section.gif

If a 2-V voltage is applied to the ends of an aluminum wire 10 m long and with a cross- sectional area of

What is the current flowing through it?

Problem 2

Detective.gif

The resistivity of a certain material at room temperature is 0.02 Wm and the Hall coefficient is . An electric field of 1 V/m is applied across it. Deduce all the information you can think of about this material.

Given

  • Temperature
  • Resistivity
  • Hall coefficient
  • Electric field

Deduction

  • Conductivity

  • Current Density

  • Magnetic Field

Problem 3.

(a) Hall Effect Sketch

Sketch a setup used to measure the Hall effect. Label each part.

Hall Effect.jpg

(b) Semiconductor Crystal

A semiconductor crystal is 5 mm long, 4 mm wide, and 2 mm thick. A 40mA current flows across the length of the sample after a 2-V battery is connected to the ends. When a 0.1T magnetic field is applied perpendicular to the large surface of the specimen, a Hall voltage of 15mV develops across the width of the sample.

Given

  • Length = 5 mm
  • Width W = 4 mm
  • Thickness H = 2 mm
  • Current I = 40 mA = 0.04 A
  • Voltage V = 2 V
  • Mag Field B = 0.1 T
  • Hall Volt = 15 mV

You can deduce that:

  • Area
Semiconductor.png

Determine

  1. Conductivity

  1. Carrier density

  1. Mobility
  1. Fermi velocity

Problem 4

(a) Fermi Derivations

Derive the expressions for the Fermi energy, Fermi velocity, and electronic density of states for a two-dimensional free electron gas.

(b) Fermi Energy & Velocity of 2D Gas

A 2D electron gas formed in a GaAs/AlGaAs quantum well has a density of . Assuming that the electrons there have the free electron mass, calculate the Fermi energy and Fermi velocity.