Klein-Gordon equation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 52: Line 52:


==Negative energy states and antiparticles==
==Negative energy states and antiparticles==
==Klein-Gordon equation with Coulomb potential==

Revision as of 02:02, 15 April 2009

How to construct

Starting from the relativistic connection between energy and momentum:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^2=\bold p^2c^2+m^2c^4}

Substituting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \rightarrow i\hbar \frac{\partial}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p \rightarrow -i\hbar \nabla} , we get Klein-Gordon equation for free particles as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar^2 \frac{\partial ^2\psi(\bold r, t)}{\partial t^2}=(-\hbar^2c^2\nabla^2+m^2c^4)\psi(\bold r, t)\qquad \qquad \qquad \qquad \qquad (9.2)}

Klein-Gordon can also be written as the following:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\square-K^2)\psi(\bold r, t)=0\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad(9.3)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square=\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}} is d'Alembert operator and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K=\frac{mc}{\hbar}} .

Equation (9.3) looks like a classical wave equation with an extra term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^2} .

For a charged particle couple with electromagnetic field, Klein-Gordon equation is as follows:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [i\hbar \frac {\partial}{\partial t}-e\phi(\bold r, t)]^2\psi(\bold r, t)=([-i\hbar\nabla-\frac{e}{c}\bold A(\bold r, t)]^2c^2+m^2c^4)\psi(\bold r, t)}

Klein-Gordon is second order in time. Therefore, to see how the states of a system evolve in time we need to know both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\psi(\bold r, t)}{\partial t}} at a certain time. While in nonrelativistic quantum mechanics, we only need Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)}

Also because the Klein-Gordon equation is second order in time, it has the solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)=e^{i(\bold p \bold r - Et)/\hbar}} with either sign of energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=\pm c\sqrt{\bold p^2+m^2c^2}} . The negative energy solution of Klein-Gordon equation has a strange property that the energy decreases as the magnitude of the momentum increases. We will see that the negative energy solutions of Klein-Gordon equation describe antiparticles, while the positive energy solutions describe particles.

Continuity equation

Multiplying (9.2) by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi^{*}} from the left, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}\psi^{*} \frac{\partial ^2\psi(\bold r, t)}{\partial t^2}=\psi^{*}(-\hbar^2\nabla^2+m^2c^2)\psi(\bold r, t)\qquad \qquad \qquad (9.4)}

Multiplying the complex conjugate form of (9.2) by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi} from the left, we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}\psi \frac{\partial ^2\psi^{*}(\bold r, t)}{\partial t^2}=\psi(-\hbar^2\nabla^2+m^2c^2)\psi^{*}(\bold r, t)\qquad \qquad \qquad (9.5)}

Subtracting (9.5) from (9.4), we get:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}(\psi^{*} \frac{\partial ^2\psi}{\partial t^2}-\psi \frac{\partial ^2\psi^{*}}{\partial t^2})=\hbar^2(\psi\nabla^2\psi^{*}-\psi^{*}\nabla^2\psi)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow -\frac{\hbar^2}{c^2}\frac{\partial}{\partial t}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})+\hbar^2\nabla(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})=0}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \frac {\partial}{\partial t}[\frac {i\hbar}{2mc^2}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})]+\nabla [\frac {\hbar}{2mi}(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})]=0}

this give us the continuity equation:

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial \rho}{\partial t}+\nabla \bold j = 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad(9.6)}

where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac {i\hbar}{2mc^2}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})\qquad \qquad \qquad \qquad \qquad \qquad(9.7)}

Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold j = \frac {\hbar}{2mi}(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})\qquad \qquad \qquad \qquad \qquad \qquad \qquad(9.8)}

Nonrelativistic limit

Negative energy states and antiparticles

Klein-Gordon equation with Coulomb potential