Klein-Gordon equation: Difference between revisions
Line 56: | Line 56: | ||
<math>E=[(pc)^2+(mc^2)^2]^{1/2}=mc^2[1+(\frac{p}{mc})^2]^{1/2}\approx mc^2(1+\frac{1}{2}(\frac{p}{mc})^2)=mc^2+\frac{p^2}{2m}</math> | <math>E=[(pc)^2+(mc^2)^2]^{1/2}=mc^2[1+(\frac{p}{mc})^2]^{1/2}\approx mc^2(1+\frac{1}{2}(\frac{p}{mc})^2)=mc^2+\frac{p^2}{2m}</math> | ||
So, the relativistic energy is different from classical energy by <math> | So, the relativistic energy is different from classical energy by <math>mc^2</math>, therefore, we can expect that if we write the solution of Klein-Gordon equation as <math>\psi e^{-imc^2t/\hbar}</math> and substitute it into Klein-Gordon equation, we will get Schrodinger equation for <math>\bold \psi</math>. | ||
Indeed, doing so we get: | Indeed, doing so we get: |
Revision as of 01:34, 16 April 2009
How to construct
Starting from the relativistic connection between energy and momentum:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E^2=\bold p^2c^2+m^2c^4}
Substituting Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E \rightarrow i\hbar \frac{\partial}{\partial t}} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold p \rightarrow -i\hbar \nabla} , we get Klein-Gordon equation for free particles as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar^2 \frac{\partial ^2\psi(\bold r, t)}{\partial t^2}=(-\hbar^2c^2\nabla^2+m^2c^4)\psi(\bold r, t)\qquad \qquad \qquad \qquad \qquad (9.2)}
Klein-Gordon can also be written as the following:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle (\square-K^2)\psi(\bold r, t)=0\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \;\;\;\;(9.3)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \square=\nabla^2-\frac{1}{c^2}\frac{\partial^2}{\partial t^2}} is d'Alembert operator and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K=\frac{mc}{\hbar}} .
Equation (9.3) looks like a classical wave equation with an extra term Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle K^2} .
For a charged particle couple with electromagnetic field, Klein-Gordon equation is as follows:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle [i\hbar \frac {\partial}{\partial t}-e\phi(\bold r, t)]^2\psi(\bold r, t)=([-i\hbar\nabla-\frac{e}{c}\bold A(\bold r, t)]^2c^2+m^2c^4)\psi(\bold r, t)}
Klein-Gordon is second order in time. Therefore, to see how the states of a system evolve in time we need to know both Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac{\partial\psi(\bold r, t)}{\partial t}} at a certain time. While in nonrelativistic quantum mechanics, we only need Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)}
Also because the Klein-Gordon equation is second order in time, it has the solutions Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi(\bold r, t)=e^{i(\bold p \bold r - Et)/\hbar}} with either sign of energy Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=\pm c\sqrt{\bold p^2+m^2c^2}} . The negative energy solution of Klein-Gordon equation has a strange property that the energy decreases as the magnitude of the momentum increases. We will see that the negative energy solutions of Klein-Gordon equation describe antiparticles, while the positive energy solutions describe particles.
Continuity equation
Multiplying (9.2) by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \psi^{*}} from the left, we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}\psi^{*} \frac{\partial ^2\psi(\bold r, t)}{\partial t^2}=\psi^{*}(-\hbar^2\nabla^2+m^2c^2)\psi(\bold r, t)\qquad \qquad \qquad (9.4)}
Multiplying the complex conjugate form of (9.2) by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \psi} from the left, we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}\psi \frac{\partial ^2\psi^{*}(\bold r, t)}{\partial t^2}=\psi(-\hbar^2\nabla^2+m^2c^2)\psi^{*}(\bold r, t)\qquad \qquad \qquad (9.5)}
Subtracting (9.5) from (9.4), we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{\hbar^2}{c^2}(\psi^{*} \frac{\partial ^2\psi}{\partial t^2}-\psi \frac{\partial ^2\psi^{*}}{\partial t^2})=\hbar^2(\psi\nabla^2\psi^{*}-\psi^{*}\nabla^2\psi)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow -\frac{\hbar^2}{c^2}\frac{\partial}{\partial t}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})+\hbar^2\nabla(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})=0}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow \frac {\partial}{\partial t}[\frac {i\hbar}{2mc^2}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})]+\nabla [\frac {\hbar}{2mi}(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})]=0}
this give us the continuity equation:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \frac {\partial \rho}{\partial t}+\nabla \bold j = 0 \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad(9.6)}
where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \rho = \frac {i\hbar}{2mc^2}(\psi^{*}\frac{\partial\psi}{\partial t}-\psi\frac{\partial\psi^{*}}{\partial t})\qquad \qquad \qquad \qquad \qquad \qquad(9.7)}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold j = \frac {\hbar}{2mi}(\psi^{*}\nabla\psi-\psi\nabla\psi^{*})\qquad \qquad \qquad \qquad \qquad \qquad \qquad(9.8)}
From (9.6) we can see that the integral of the density Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \rho} over all space is conserved. However, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold\rho} is not positively definite. Therefore, we can neither interpret Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \rho} as the particle probability density nor can we interpret Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold j} as the particle current. The appropriate interpretation are charge density for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\rho(\bold r,t)} and electric current for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle e\bold j(\bold r, t)} since charge density and electric current can be either positive or negative.
Nonrelativistic limit
In nonrelativistic limit when Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v \ll c} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle p \ll mc} , we have:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle E=[(pc)^2+(mc^2)^2]^{1/2}=mc^2[1+(\frac{p}{mc})^2]^{1/2}\approx mc^2(1+\frac{1}{2}(\frac{p}{mc})^2)=mc^2+\frac{p^2}{2m}}
So, the relativistic energy is different from classical energy by Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle mc^2} , therefore, we can expect that if we write the solution of Klein-Gordon equation as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi e^{-imc^2t/\hbar}} and substitute it into Klein-Gordon equation, we will get Schrodinger equation for Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \bold \psi} .
Indeed, doing so we get:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\hbar ^2\frac {\partial ^2 \psi}{\partial t^2}e^{-imc^2t/\hbar}+2\frac {\partial \psi}{\partial t}imc^2 \hbar e^{-imc^2t/\hbar}+\psi m^2c^4 e^{-imc^2t/\hbar}=-\hbar ^2 c^2\nabla ^2 \psi e^{-imc^2t/\hbar}+m^2c^4 \psi e^{-imc^2t/\hbar}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \Rightarrow -\frac {\hbar ^2}{2mc^2} \frac{\partial ^2 \psi}{\partial t^2}+i\hbar \frac {\partial \psi}{\partial t}=-\frac {\hbar ^2}{2m}\nabla ^2 \psi}
The first term can be neglected in nonrelativistic limit, we get Schrodinger equation (for free particles:
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle i\hbar \frac {\partial \psi}{\partial t}=-\frac {\hbar ^2}{2m} \nabla ^2 \psi}