Normalization constant: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
In this theory, the exact state and exact energy can be written as follows: | In this theory, the exact state and exact energy can be written as follows: | ||
<math>|N \rangle=|n \rangle+ \sum_{k=1}^{+\infty}\lambda ^k \left (\sum_{m_{1}}'...\sum_{m_{k}}' |m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right )</math> | <math>|N \rangle=|n \rangle+ \sum_{k=1}^{+\infty}\lambda ^k \left (\sum_{m_{1}}'...\sum_{m_{k}}' |m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) \; (\bold 1)</math> | ||
<math>E_{n}=\epsilon _{n}+ \lambda \langle n|H'|n \rangle + </math> | <math>E_{n}=\epsilon _{n}+ \lambda \langle n|H'|n \rangle + </math> | ||
<math> + \sum_{k=1}^{+\infty}\lambda ^{k+1} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math> | <math> + \sum_{k=1}^{+\infty}\lambda ^{k+1} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math> | ||
Taking the derivative of <math>E_{n}</math> with respect <math>\bold \epsilon _{n}</math> to, using the chain rule ,we get: | |||
<math>\frac {\partial E_{n}}{\partial \epsilon _{n}}=1+0+ </math> | |||
<math> + \frac {\partial E_{n}}{\partial \epsilon _{n}} \sum_{k=1}^{+\infty}\lambda ^{k+1} \frac {\partial}{\partial E_{n}} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math> | |||
<math>=1-\frac {\partial E_{n}}{\partial \epsilon _{n}} \sum_{k=1}^{+\infty}\lambda ^{k+1} \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle ...</math> | |||
<math>...\frac {1}{E_{n}- \epsilon _{m_{p-1}}}\langle m_{p-1}|H'|m_{p} \rangle.\frac {1}{(E_{n}- \epsilon _{m_{p}})^2}\langle m_{p}|H'|m_{p+1} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle </math> | |||
From this we can solve for <math>\frac {\partial E_{n}}{\partial \epsilon _{n}}</math> | |||
<math> (\frac {\partial E_{n}}{\partial \epsilon _{n}})^{-1}=\sum_{k=1}^{+\infty}\lambda ^{k+1} \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle ...</math> | |||
<math>...\frac {1}{E_{n}- \epsilon _{m_{p-1}}}\langle m_{p-1}|H'|m_{p} \rangle.\frac {1}{(E_{n}- \epsilon _{m_{p}})^2}\langle m_{p}|H'|m_{p+1} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \qquad \qquad \qquad \qquad (\bold 2)</math> | |||
Now let's evaluate <math>Z=\langle N|N \rangle ^{-1}</math> from <math>(\bold 1)</math> |
Revision as of 16:03, 18 April 2009
Using Brillouin-Wigner perturbation theory we will proof that
In this theory, the exact state and exact energy can be written as follows:
Taking the derivative of with respect to, using the chain rule ,we get:
From this we can solve for
Now let's evaluate from