Normalization constant: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 29: | Line 29: | ||
<math>Z^{-1}=1+ \left ( \sum_{p=1}^{+\infty}\lambda ^p \sum_{m_{1}}'...\sum_{m_{p}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}| \right ) \bold .</math> | <math>Z^{-1}=1+ \left ( \sum_{p=1}^{+\infty}\lambda ^p \sum_{m_{1}}'...\sum_{m_{p}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}| \right ) \bold .</math> | ||
<math> \bold . \left ( \sum_{q=1}^{+\infty}\lambda ^q \sum_{m'_{1}}'...\sum_{m'_{q}}' |m'_{1} \rangle \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle \right )</math> | <math> \bold . \left ( \sum_{q=1}^{+\infty}\lambda ^q \sum_{m'_{1}}'...\sum_{m'_{q}}' |m'_{1} \rangle \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle \right )=</math> | ||
<math>=1+ \sum_{p=1}^{+\infty} \sum_{q=1}^{+\infty} \lambda ^{p+q} \sum_{m_{1}}'...\sum_{m_{p}}' \sum_{m'_{1}}'...\sum_{m'_{q}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|m'_{1} \rangle \bold .</math> | |||
<math> \bold . \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math> | |||
We have <math>\langle m_{1}|m'_{1} \rangle= \delta _{m_{1}m'_{1}}</math>, therefore the summing over <math>m'_{1}</math> is equivalent to setting <math>m'_{1}=m_{1}</math>. We get: | |||
<math> Z^{-1}=1+ \sum_{p=1}^{+\infty} \sum_{q=1}^{+\infty} \lambda ^{p+q} \sum_{m_{1}}'...\sum_{m_{p}}' \sum_{m'_{2}}'...\sum_{m'_{q}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{(E_{n}- \epsilon _{m_{1}})^2} \bold .</math> | |||
<math> \bold . \langle m_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math> |
Revision as of 16:41, 18 April 2009
Using Brillouin-Wigner perturbation theory we will proof that
In this theory, the exact state and exact energy can be written as follows:
Taking the derivative of with respect to, using the chain rule ,we get:
From this we can solve for
Now let's evaluate from
We have , therefore the summing over is equivalent to setting . We get: