Normalization constant: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Using Brillouin-Wigner perturbation theory we will proof that <math>Z=\langle N|N \rangle ^{-1} = \frac {\partial E_{n}}{\partial \epsilon_{n}}</math> In this theory, the exact state and ...)
 
No edit summary
 
(6 intermediate revisions by the same user not shown)
Line 3: Line 3:
In this theory, the exact state and exact energy can be written as follows:
In this theory, the exact state and exact energy can be written as follows:


<math>|N \rangle=|n \rangle+ \sum_{k=1}^{+\infty}\lambda ^k \left (\sum_{m_{1}}'...\sum_{m_{k}}' |m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right )</math>
<math>|N \rangle=|n \rangle+ \sum_{k=1}^{+\infty}\lambda ^k \left (\sum_{m_{1}}'...\sum_{m_{k}}' |m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) \; (\bold 1)</math>
 
<math>E_{n}=\epsilon _{n}+ \lambda \langle n|H'|n \rangle + </math>
 
<math> + \sum_{k=1}^{+\infty}\lambda ^{k+1} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math>
 
where <math>\sum '</math>does not allow the running indexes equal to n.
 
Taking the derivative of <math>E_{n}</math> with respect <math>\bold \epsilon _{n}</math> to, using the chain rule ,we get:
 
<math>\frac {\partial E_{n}}{\partial \epsilon _{n}}=1+0+ </math>
 
<math> + \frac {\partial E_{n}}{\partial \epsilon _{n}} \sum_{k=1}^{+\infty}\lambda ^{k+1} \frac {\partial}{\partial E_{n}} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math>
 
<math>=1-\frac {\partial E_{n}}{\partial \epsilon _{n}} \sum_{k=1}^{+\infty}\lambda ^{k+1} \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle ...</math>
 
<math>...\frac {1}{E_{n}- \epsilon _{m_{p-1}}}\langle m_{p-1}|H'|m_{p} \rangle.\frac {1}{(E_{n}- \epsilon _{m_{p}})^2}\langle m_{p}|H'|m_{p+1} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle </math>
 
From this we can solve for <math>\frac {\partial E_{n}}{\partial \epsilon _{n}}</math>
 
<math> (\frac {\partial E_{n}}{\partial \epsilon _{n}})^{-1}=\sum_{k=1}^{+\infty}\lambda ^{k+1} \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle ...</math>
 
<math>...\frac {1}{E_{n}- \epsilon _{m_{p-1}}}\langle m_{p-1}|H'|m_{p} \rangle.\frac {1}{(E_{n}- \epsilon _{m_{p}})^2}\langle m_{p}|H'|m_{p+1} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle  \qquad \qquad \qquad \qquad (\bold 2)</math>
 
Now let's evaluate <math>Z=\langle N|N \rangle ^{-1}</math> from <math>(\bold 1)</math>
 
<math>Z^{-1}=1+ \left ( \sum_{p=1}^{+\infty}\lambda ^p \sum_{m_{1}}'...\sum_{m_{p}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}| \right ) \bold .</math>
 
<math> \bold . \left ( \sum_{q=1}^{+\infty}\lambda ^q \sum_{m'_{1}}'...\sum_{m'_{q}}' |m'_{1} \rangle \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle \right )=</math>
 
<math>=1+ \sum_{p=1}^{+\infty} \sum_{q=1}^{+\infty} \lambda ^{p+q} \sum_{m_{1}}'...\sum_{m_{p}}' \sum_{m'_{1}}'...\sum_{m'_{q}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|m'_{1} \rangle \bold .</math>
 
<math> \bold .  \frac {1}{E_{n}- \epsilon _{m'_{1}}} \langle m'_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math>
 
We have <math>\langle m_{1}|m'_{1} \rangle= \delta _{m_{1}m'_{1}}</math>, therefore the summing over <math>m'_{1}</math> is equivalent to setting  <math>m'_{1}=m_{1}</math>. We get:
 
<math> Z^{-1}=1+ \sum_{p=1}^{+\infty} \sum_{q=1}^{+\infty} \lambda ^{p+q} \sum_{m_{1}}'...\sum_{m_{p}}' \sum_{m'_{2}}'...\sum_{m'_{q}}' \langle n|H'|m_{p} \rangle \frac {1}{E_{n}- \epsilon _{m_{p}}} \langle m_{p}|H'|m_{p-1} \rangle \frac {1}{E_{n}- \epsilon _{m_{p-1}}}...\langle m_{2}|H'|m_{1} \rangle \frac {1}{(E_{n}- \epsilon _{m_{1}})^2} \bold .</math>
 
<math> \bold . \langle m_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math>
 
Let's define <math>k=p+q-1</math> and exchange the indexes as follows:
 
<math>m_{p} \rightarrow m_{1}; \; m_{p-1} \rightarrow m_{2}; \; ... ; m_{1} \rightarrow m_{p} </math>
 
<math>m'_{2} \rightarrow m_{p+1}; \; m'_{3} \rightarrow m_{p+2}; \; ... ; m'_{q} \rightarrow m_{p+q-1}=m_{k} </math>
 
Doing so we can see that <math>Z^{-1}</math> exactly equals to <math>(\frac {\partial E_{n}}{\partial \epsilon_{n}})^{-1}</math> given in (2). Therefore:
 
<math>Z=\langle N|N \rangle ^{-1} = \frac {\partial E_{n}}{\partial \epsilon_{n}}</math>

Latest revision as of 16:54, 18 April 2009

Using Brillouin-Wigner perturbation theory we will proof that

In this theory, the exact state and exact energy can be written as follows:

where does not allow the running indexes equal to n.

Taking the derivative of with respect to, using the chain rule ,we get:

From this we can solve for

Now let's evaluate from

We have , therefore the summing over is equivalent to setting . We get:

Let's define and exchange the indexes as follows:

Doing so we can see that exactly equals to given in (2). Therefore: