|
|
(One intermediate revision by the same user not shown) |
Line 8: |
Line 8: |
|
| |
|
| <math> + \sum_{k=1}^{+\infty}\lambda ^{k+1} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math> | | <math> + \sum_{k=1}^{+\infty}\lambda ^{k+1} \left ( \sum_{m_{1}}'...\sum_{m_{k}}' \langle n|H'|m_ {1} \rangle \frac {1}{E_{n}- \epsilon _{m_{1}}}\langle m_{1}|H'|m_{2} \rangle.\frac {1}{E_{n}- \epsilon _{m_{2}}}\langle m_{2}|H'|m_{3} \rangle...\frac {1}{E_{n}- \epsilon _{m_{k-1}}}\langle m_{k-1}|H'|m_{k} \rangle.\frac {1}{E_{n}- \epsilon _{m_{k}}}\langle m_{k}|H'|n \rangle \right ) </math> |
| | |
| | where <math>\sum '</math>does not allow the running indexes equal to n. |
|
| |
|
| Taking the derivative of <math>E_{n}</math> with respect <math>\bold \epsilon _{n}</math> to, using the chain rule ,we get: | | Taking the derivative of <math>E_{n}</math> with respect <math>\bold \epsilon _{n}</math> to, using the chain rule ,we get: |
Line 40: |
Line 42: |
|
| |
|
| <math> \bold . \langle m_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math> | | <math> \bold . \langle m_{1}|H'|m'_{2} \rangle ...\frac {1}{E_{n}- \epsilon _{m'_{q-1}}} \langle m'_{q-1}|H'|m'_{q} \rangle \frac {1}{E_{n}- \epsilon _{m'_{q}}} \langle m'_{q}|H'|n \rangle </math> |
| | |
| | Let's define <math>k=p+q-1</math> and exchange the indexes as follows: |
| | |
| | <math>m_{p} \rightarrow m_{1}; \; m_{p-1} \rightarrow m_{2}; \; ... ; m_{1} \rightarrow m_{p} </math> |
| | |
| | <math>m'_{2} \rightarrow m_{p+1}; \; m'_{3} \rightarrow m_{p+2}; \; ... ; m'_{q} \rightarrow m_{p+q-1}=m_{k} </math> |
| | |
| | Doing so we can see that <math>Z^{-1}</math> exactly equals to <math>(\frac {\partial E_{n}}{\partial \epsilon_{n}})^{-1}</math> given in (2). Therefore: |
| | |
| | <math>Z=\langle N|N \rangle ^{-1} = \frac {\partial E_{n}}{\partial \epsilon_{n}}</math> |
Using Brillouin-Wigner perturbation theory we will proof that
In this theory, the exact state and exact energy can be written as follows:
where
does not allow the running indexes equal to n.
Taking the derivative of
with respect
to, using the chain rule ,we get:
From this we can solve for
Now let's evaluate
from
We have
, therefore the summing over
is equivalent to setting
. We get:
Let's define
and exchange the indexes as follows:
Doing so we can see that
exactly equals to
given in (2). Therefore: