Phy5645/Particle in Uniform Magnetic Field: Difference between revisions
(New page: An electron moves in magnetic field which is in the z direction, <math>\overrightarrow{B}=B\hat z</math>, and the Landau gauge <math>\overrightarrow{A}=(\frac{-By}{2},\frac{Bx}{2},0)</math...) |
No edit summary |
||
Line 1: | Line 1: | ||
---- | |||
An electron moves in magnetic field which is in the z direction, <math>\overrightarrow{B}=B\hat z</math>, and the Landau gauge <math>\overrightarrow{A}=(\frac{-By}{2},\frac{Bx}{2},0)</math> | An electron moves in magnetic field which is in the z direction, <math>\overrightarrow{B}=B\hat z</math>, and the Landau gauge <math>\overrightarrow{A}=(\frac{-By}{2},\frac{Bx}{2},0)</math> | ||
Line 47: | Line 49: | ||
<math>\text{E}_{k,n}=\hbar\frac{eB}{cm}(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math> | <math>\text{E}_{k,n}=\hbar\frac{eB}{cm}(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}</math> | ||
---- |
Revision as of 00:58, 18 October 2009
An electron moves in magnetic field which is in the z direction, , and the Landau gauge
- Evaluate
- Using the hamiltonian and commutation relation obtained in a), obtain the energy eigenvalues.
- According to the Ladau gauge,
- The hamiltonian fot the system is;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{=}\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}+\frac{P_{z}^{2}}{2m}}
If we define first two terms as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H}_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}} , and the last one as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H}_{2}=\frac{P_{z}^{2}}{2m}} , The hamiltonian will be Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H=H}_{1}+H_{2}} .
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H_{1}=\frac{\Pi _{x}^{2}}{2m}+\frac{\Pi _{y}^{2}}{2m}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{1}{2m}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )+\frac{\Pi _{y}^{2}}{2m}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2m}\left ({\frac{m^{2}}{m^{2}}} \right )\left ({\frac{e^{2}B^{2}}{c^{2}}} \right )\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle =\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m\left ({\frac{eB}{cm}} \right )^{2}\left ({\frac{c\Pi _{x}}{eB}} \right )^{2}}
Then the hamiltonian will look like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H}_{1}=\frac{\Pi _{y}^{2}}{2m}+\frac{1}{2}m \tilde{w^{2}} \tilde{x^{2}}} where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{w}= \left ({\frac{eB}{cm}} \right )} and Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \tilde{x}= \left ({\frac{c\Pi _{x}}{eB}} \right )} .
As we know, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H}\Psi =E\Psi }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2}) + \frac{P_{z}^{2}}{2m} }
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{H=}\hbar \left ({\frac{eB}{cm}} \right )(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}}
So now we can write that;
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \text{E}_{k,n}=\hbar\frac{eB}{cm}(n+\frac{1}{2})+\frac{\hbar ^{2}k^{2}}{2m}}