Phy5645/Problem3: Difference between revisions
ScottMiller (talk | contribs) (New page: Consider an attractive delta-shell potential (<math>\lambda > 0)) |
ScottMiller (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
Consider an attractive delta-shell potential (<math>\lambda > 0) | Consider an attractive delta-shell potential (<math>\lambda > 0</math>) of the form: | ||
<math>V(\textbf{r})=-\frac{\hbar^2 \lambda}{2m} \delta(r-a)</math> | |||
1) Derive the equation for the phase shift caused by this potential for arbitrary angular momentum. | |||
2) Obtain the expression for the s-wave phase shift. | |||
3) Obtain the scattering amplitude for the s-wave. | |||
Solutions: | |||
<math>\left[ -\frac{\hbar^2}{2m}\frac{d^2}{dr^2} + \frac{\hbar^2 l(l+1)}{2mr^2} + V(r)\right]u_l (r)=Eu_l (r)</math> | |||
where <math> \psi(\textbf{r})=f_l (r)Y_m^l(\theta, \phi)</math> and <math>f_l (r)=\frac{u_l (r)}{r}</math> | |||
In region one, r < a, <math>f_l (r)=C j_l(kr)\!</math> where <math> k=\sqrt{\frac{2mE}{\hbar^2}}</math> | |||
In region two, r > a, <math>f_l (r)=A j_l(kr) + B n_l(kr)\!</math> | |||
Invoking continuity of the wave function on either side of the boundary: | |||
<math> C j_l(ka) = A j_l(ka) + B n_l(ka)\!</math> | |||
Also, with regards to the strength of the delta function held proportional to the discontinuity of the derivative of the wave function at the boundary: | |||
<math>Aj'_l(ka) + Bn'_l(ka) - Cj'_l(ka) = -\lambda A j_l(ka)\!</math> | |||
Let <math> tan(\delta_l)=\frac{-B}{A}</math> | |||
Therefore by algebraic manipulation: | |||
<math> tan(\delta_l)=\frac{\lambda j^2_l(ka)}{j_l(ka)n'_l(ka) - n_l(ka)j'_l(ka) + \lambda n_l(ka)j_l(ka)}</math> | |||
For s-waves, set <math> l=0\!</math> | |||
Therefore: | |||
<math> tan(\delta_0)=\frac{\lambda j^2_0(ka)}{n_0(ka)j_1(ka) - n_1(ka)j_0(ka) + \lambda n_0(ka)j_0(ka)}</math> | |||
which simplifies to: | |||
<math>tan(\delta_0)=\frac{\lambda sin^2(ka)}{1 - \lambda sin(ka)cos(ka)}</math> | |||
From here, recall that the scattering amplitude <math>f_k (\theta)=\frac{1}{k}\sum_{l=0}^\infty (2l+1)e^{i\delta_l(k)}sin(\delta_l (k)) P_l(cos(\theta))</math> | |||
For <math>l=0\!</math> and in conjunction with the derived result for <math>\delta_l\!</math> above: | |||
<math>f_k (\theta)=\frac{e^{i\delta_0}}{k}sin(\delta_0)</math> |
Latest revision as of 14:59, 2 December 2009
Consider an attractive delta-shell potential () of the form:
1) Derive the equation for the phase shift caused by this potential for arbitrary angular momentum.
2) Obtain the expression for the s-wave phase shift.
3) Obtain the scattering amplitude for the s-wave.
Solutions:
where and
In region one, r < a, where
In region two, r > a,
Invoking continuity of the wave function on either side of the boundary:
Also, with regards to the strength of the delta function held proportional to the discontinuity of the derivative of the wave function at the boundary:
Let
Therefore by algebraic manipulation:
For s-waves, set
Therefore:
which simplifies to:
From here, recall that the scattering amplitude
For and in conjunction with the derived result for above: