Phy5645/Problem 1D sample: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 20: Line 20:


:<math>
:<math>
\begin{array}
\begin{align}
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
-\frac{\hbar^2}{2m} \left[ \frac{d^2\Phi(x)}{dx^2} \Delta(y) \Omega (z) + \Phi(x)\frac{d^2\Delta(y)}{dy^2} \Omega (z)  +  \Phi(x) \Delta (y)\frac{d^2\Omega(z)}{dz^2} \right] \\
& + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z)  
& + \left[X(x)+Y(y)+Z(z)\right]\Phi(x) \Delta(y) \Omega (z) = E\Phi(x) \Delta(y) \Omega (z)  
\end{array}
\end{align}
</math>
</math>


Line 30: Line 30:


:<math>
:<math>
\begin{array}
\begin{align}
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x)
-\frac{\hbar^2}{2m} \frac{1}{\Phi(x)} \frac{d^2\Phi(x)}{dx^2} + X(x)
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) \\
-\frac{\hbar^2}{2m} \frac{1}{\Delta(y)} \frac{d^2\Delta(y)}{dy^2} + Y(y) \\
& -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z)  
& -\frac{\hbar^2}{2m} \frac{1}{\Omega(z)} \frac{d^2\Omega(z)}{dz^2} + Z(z)  
= E   
= E   
\end{array}
\end{align}
</math>
</math>



Revision as of 00:42, 5 December 2009

(Submitted by team 1. Based on problem 3.19 in Schaum's Theory and problems of Quantum Mechanics)

Consider a particle of mass m in a three dimensional potential:

Using the Schroedinger's equation show that we can treat the problem like three independent one-dimensional problems. Relate the energy of the three-dimensional state to the effective energies of one-dimensional problem.

______________________________________________________________________________________________________________________________________

The Schroedinger's equation takes the form:


Assuming that can be write like:


So,


Dividing by

Perfectly we can separate the right hand side in three parts, where only one depends of , only one of and only one of . Then each of these parts must be equal to a constant. So:

where , and are constant and


Hence the three-dimensional problem has been divided in three one-dimensional problems where the total energy is the sum of the energies , and in each dimension.