Commutation Problem: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
(New page: Let <math> f(x) \!</math> be a differentiable function, using <math>[x,p_{x}]=i\hbar</math>, prove: (a) <math>[x,p^{2}_{x}f(x) ]=2i\hbar p_{x} f(x)</math> (b) <math>[x,p_{x}f(x)p_{x}]=i...)
 
No edit summary
Line 37: Line 37:
&=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\
&=i\hbar f(x)p_{x} + p_{x}[x,p_{x}]f(x) + p_{x}[x,f(x)]p_{x} \\
&=i\hbar [f(x)p_{x}+p_{x}f(x)]
&=i\hbar [f(x)p_{x}+p_{x}f(x)]
\end{align}
</math>
(c)
<math>
\begin{align}
&[p_{x},p^{2}_{x}f(x)] \\
&=[p_{x},p^{2}_{x}]f(x)+p^{2}_{x}[p_{x},f(x)] \\
&= p^{2}_{x} [p_{x},f(x)]
\end{align}
</math>
Now, consider
<math>
\begin{align}
&[p_{x},f(x)]\psi(x) \\
&=-i\hbar \frac{d}{dx}(f(x)\psi(x))+i\hbar f(x)\frac{d\psi(x)}{dx} \\
&=-i\hbar \frac{df}{dx}\psi(x)-i\hbar f(x)\frac{d\psi(x)}{dx} +i\hbar f(x)\frac{d\psi(x)}{dx}  \\
&=-i\hbar \frac{df}{dx}\psi(x)
\end{align}
</math>
So
<math>[p_{x},f(x)]
=-i\hbar \frac{df}{dx}
</math>
and so
<math>[p_{x},p^{2}_{x}f(x)]
=-i\hbar p^{2}_{x}\frac{df}{dx}
</math>
(d)
<math>
\begin{align}
&[p_{x},p_{x}f(x)p_{x}] \\
&=p_{x}f[p_{x},p_{x}]+[p_{x},p_{x}f]p_{x} \\
&=p_{x}[p_{x},f]p_{x}+[p_{x},p_{x}]fp_{x} \\
&=-i\hbar p_{x}\frac{df}{dx}p_{x}
\end{align}
\end{align}


</math>
</math>

Revision as of 21:25, 5 December 2009

Let be a differentiable function, using , prove:

(a)

(b)

(c)

(d)


sol:

(a)


(b)


(c)

Now, consider

So

and so



(d)