Phy5645/Energy conservation: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
Line 9: Line 9:
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,  
Using: <math>\psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi </math>,  
hence:
hence:
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)\left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x </math>,
<math><E>=\iiint\left(-\frac{\hbar^2}{2m}\right)
 
\left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x </math>,

Revision as of 16:32, 9 December 2009

Example 1

Consider a particle moving in a potential field Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle V(\textbf{r})} , (1) Prove the average energy equation: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <E>=\int W d^3x=\int\left[\frac{\hbar^2}{2m}\nabla\psi^*\cdot\nabla\psi\right]d^3x} , where W is energy density, (2) Prove the energy conservation equation: , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textbf{S}} is energy flux density:

Prove: the energy operator in three dimensions is: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <H>=-\frac{\hbar^2}{2m}\nabla^2\psi+V\psi} so the average energy in state Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi } is: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle <E>=\iiint \psi^*H\psi d^3x=\iiint \psi^*\left(-\frac{\hbar^2}{2m}\nabla^2\psi + V\psi\right) d^3x } , Using: Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \psi^*\nabla^2\psi=\nabla\left(\psi^*\nabla\psi\right)-\nabla\psi^*\nabla\psi } , hence: Failed to parse (syntax error): {\displaystyle <E>=\iiint\left(-\frac{\hbar^2}{2m}\right) \left{\nabla\left(\psi^*\psi\right)-\nabla\psi^*\nabla\psi\right} d^3x+\iiint\psi^*\nabla\psi d^3x } ,