Phy5645/Transformations and Symmetry Problem: Difference between revisions
SohamGhosh (talk | contribs) No edit summary |
SohamGhosh (talk | contribs) No edit summary |
||
Line 1: | Line 1: | ||
===Symmetries(Problem taken from | ===Symmetries(Problem taken from a quantum assignment in the Department of Physics, UF)=== | ||
====Problem==== | |||
Consider an <math>N</math> state system with the states labeled as <math>|1\rangle , |1\rangle , ..., |N\rangle</math>. Let the hamiltonian for this system be | Consider an <math>N</math> state system with the states labeled as <math>|1\rangle , |1\rangle , ..., |N\rangle</math>. Let the hamiltonian for this system be | ||
Line 18: | Line 19: | ||
(d) Find a complete set of eigenstates of <math>F</math> and their eigenvalues. Do all these eigenstates have to be eigenstates of <math>H</math> as well? If not, do any of these eigenstates have to be eigenstates of <math>H</math>? Explain your answer. | (d) Find a complete set of eigenstates of <math>F</math> and their eigenvalues. Do all these eigenstates have to be eigenstates of <math>H</math> as well? If not, do any of these eigenstates have to be eigenstates of <math>H</math>? Explain your answer. | ||
====Solution==== | |||
<math>T|n\rangle = |n+1\rangle</math> | |||
<math>\langle i|T|j\rangle = \delta_{1,j+1}.</math> So | |||
<math>T = \sum_{n=1}^{N} |n+1\rangle\langle n|</math> with <math>|N+1\rangle = |1\rangle</math> | |||
<math>T^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle n+1|</math> | |||
So | |||
<math>TT^\dagger = \sum_{m=1}^{N}\sum_{n=1}^{N}(|m+1\rangle\langle m|)(|n\rangle\langle n+1|) = \sum_{m=1}^{N}\sum_{n=1}^{N}delta_{m,n}|m+1\rangle\langle n+1|</math> | |||
<math>TT^\dagger = \sum_{n=1}^{N}|n\rangle\langle n| = \left [ I \right ]_{NXN}</math> | |||
So <math>T</math> is unitary. | |||
<math>\left [ T,H \right ] = \sum_{m=1}^{N}\sum_{n=1}^{N}[(|m+1\rangle\langle m|)(|n\rangle \langle n+1| + |n+1\rangle \langle n|) - (|n\rangle \langle n+1| + |n+1\rangle \langle n|)(|m+1\rangle\langle m|)]</math> | |||
<math>= \sum_{n=1}^{N}[|n+1\rangle\langle n+1| + |n+2\rangle\langle n| - |n\rangle\langle n| - |n+1\rangle\langle n-1|]</math> | |||
<math>= \sum_{n=2}^{N+1}|n\rangle\langle n| + \sum_{n=2}^{N+1}|n+1\rangle\langle n-1| - \sum_{n=1}^{N}|n\rangle\langle n| - \sum_{n=1}^{N}|n+1\rangle\langle n-1|</math> | |||
<math>= \sum_{n=1}^{N}[|n+2\rangle\langle n| - |n+1\rangle\langle n-1|]</math> | |||
as <math>|N+1\rangle = |1\rangle</math> |
Revision as of 20:04, 9 December 2009
Symmetries(Problem taken from a quantum assignment in the Department of Physics, UF)
Problem
Consider an Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle N} state system with the states labeled as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle , |1\rangle , ..., |N\rangle} . Let the hamiltonian for this system be
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \sum_{n=1}^{N} (|n\rangle \langle n+1| + |n+1\rangle \langle n|}
Notice that the Hamiltonian, in this form, is manifestly hermitian. Use periodic boundary condition, i.e, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle} . You can think of these states as being placed around a circle.
(a) Define the translation operator, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} as taking Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |1\rangle \to |2\rangle, |2\rangle \to |3\rangle ,...,|N\rangle \to |1\rangle} .Write T in a form like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} in the first equation and show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is both unitary and commutes with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} . It is thus a symmetry of the hamiltonian.
(b) Find the eigenstates of T by using wavefunctions of the form
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |\psi \rangle = \sum_{n=1}^{N} e^{ikn}|n\rangle}
What are the eigenvalues of these eigenstates? Do all these eigenstates have to be eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} as well? If not, do any of these eigenstates have to be eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} ? Explain your answer.
(c) Next Consider Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} which takes Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |n\rangle \to |N+1-n\rangle.} Write F in a form like Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} in the first equation and show that Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} both is unitary and commutes with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} . It is thus a symmetry of the hamiltonian.
(d) Find a complete set of eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle F} and their eigenvalues. Do all these eigenstates have to be eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} as well? If not, do any of these eigenstates have to be eigenstates of Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle H} ? Explain your answer.
Solution
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T|n\rangle = |n+1\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \langle i|T|j\rangle = \delta_{1,j+1}.} So
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T = \sum_{n=1}^{N} |n+1\rangle\langle n|} with Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T^{\dagger} = \sum_{n=1}^{N} |n\rangle\langle n+1|} So
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle TT^\dagger = \sum_{m=1}^{N}\sum_{n=1}^{N}(|m+1\rangle\langle m|)(|n\rangle\langle n+1|) = \sum_{m=1}^{N}\sum_{n=1}^{N}delta_{m,n}|m+1\rangle\langle n+1|}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle TT^\dagger = \sum_{n=1}^{N}|n\rangle\langle n| = \left [ I \right ]_{NXN}}
So Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle T} is unitary.
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \left [ T,H \right ] = \sum_{m=1}^{N}\sum_{n=1}^{N}[(|m+1\rangle\langle m|)(|n\rangle \langle n+1| + |n+1\rangle \langle n|) - (|n\rangle \langle n+1| + |n+1\rangle \langle n|)(|m+1\rangle\langle m|)]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+1\rangle\langle n+1| + |n+2\rangle\langle n| - |n\rangle\langle n| - |n+1\rangle\langle n-1|]}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=2}^{N+1}|n\rangle\langle n| + \sum_{n=2}^{N+1}|n+1\rangle\langle n-1| - \sum_{n=1}^{N}|n\rangle\langle n| - \sum_{n=1}^{N}|n+1\rangle\langle n-1|}
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle = \sum_{n=1}^{N}[|n+2\rangle\langle n| - |n+1\rangle\langle n-1|]} as Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle |N+1\rangle = |1\rangle}