Phy5645/Hydrogen Atom WKB: Difference between revisions
Jump to navigation
Jump to search
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
Use WKB approximation to estimate energy spectrum for Hydrogen atom. | Use WKB approximation to estimate energy spectrum for Hydrogen atom. | ||
Hint: <math>\text{use the relation let r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math> | |||
</math> | |||
---- | ---- | ||
---- | ---- | ||
Line 12: | Line 13: | ||
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math> | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math> | ||
if we do this substitution: | |||
<math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{ and V=}-\frac{e^{2}}{r}\text{ }</math> | <math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{ and V=}-\frac{e^{2}}{r}\text{ }</math> | ||
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math> | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math> | ||
<math>\text{ | <math>\text{the relation r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math> | ||
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> | <math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math> |
Revision as of 20:28, 9 December 2009
Use WKB approximation to estimate energy spectrum for Hydrogen atom. Hint: </math>
The approximation is:
where r1 and r2 are turning points in this case.
if we do this substitution: