Phy5645/Hydrogen Atom WKB: Difference between revisions

From PhyWiki
Jump to navigation Jump to search
No edit summary
No edit summary
Line 1: Line 1:
Use WKB approximation to estimate energy spectrum for Hydrogen atom.
Use WKB approximation to estimate energy spectrum for Hydrogen atom.
 
Hint: <math>\text{use the relation let  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
</math>
----
----
----
----
Line 12: Line 13:


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math>
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1-}\frac{\hbar ^{2}l(l+1)}{2mr^{2}E}+\frac{e^{2}}{Er})^{1/2}dr=(n+\frac{1}{2})\pi \hbar </math>
 
if we do this substitution:
<math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{  and V=}-\frac{e^{2}}{r}\text{    }</math>
<math>\text{let T=}-\frac{\hbar ^{2}l(l+1)}{2mE}\text{  and V=}-\frac{e^{2}}{r}\text{    }</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math>
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {(1+\frac{T}{r^{2}}}+\frac{V}{r})^{1/2}dr=(n+\frac{1}{2})\pi \hbar \text{ }</math>


<math>\text{use the relation let  r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>
<math>\text{the relation r}^{2}-Vr+T=(r_{1}-r)(r_{2}-r)</math>


<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>
<math>\sqrt {2mE} \int\limits_{r1}^{r2} {\left ({\frac{(r_{1}-r)(r_{2}-r)}{r^{2}}} \right )^{1/2}dr=(n+\frac{1}{2})\pi \hbar }</math>

Revision as of 20:28, 9 December 2009

Use WKB approximation to estimate energy spectrum for Hydrogen atom. Hint: </math>



The approximation is:

where r1 and r2 are turning points in this case.

if we do this substitution: